1
|
de Oliveira MVD, da Costa KS, Silva JRA, Lameira J, Lima AH. Role of UDP-N-acetylmuramic acid in the regulation of MurA activity revealed by molecular dynamics simulations. Protein Sci 2024; 33:e4969. [PMID: 38532715 DOI: 10.1002/pro.4969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
The peptidoglycan biosynthesis pathway plays a vital role in bacterial cells, and facilitates peptidoglycan layer formation, a fundamental structural component of the bacterial cell wall. The enzymes in this pathway are candidates for antibiotic development, as most do not have mammalian homologues. The UDP-N-acetylglucosamine (UNAG) enolpyruvyl transferase enzyme (MurA) in the peptidoglycan pathway cytoplasmic step is responsible for the phosphoenolpyruvate (PEP)-UNAG catalytic reaction, forming UNAG enolpyruvate and inorganic phosphate. Reportedly, UDP-N-acetylmuramic acid (UNAM) binds tightly to MurA forming a dormant UNAM-PEP-MurA complex and acting as a MurA feedback inhibitor. MurA inhibitors are complex, owing to competitive binding interactions with PEP, UNAM, and UNAG at the MurA active site. We used computational methods to explore UNAM and UNAG binding. UNAM showed stronger hydrogen-bond interactions with the Arg120 and Arg91 residues, which help to stabilize the closed conformation of MurA, than UNAG. Binding free energy calculations using end-point computational methods showed that UNAM has a higher binding affinity than UNAG, when PEP is attached to Cys115. The unbinding process, simulated using τ-random acceleration molecular dynamics, showed that UNAM has a longer relative residence time than UNAG, which is related to several complex dissociation pathways, each with multiple intermediate metastable states. This prevents the loop from opening and exposing the Arg120 residue to accommodate UNAG and potential new ligands. Moreover, we demonstrate the importance of Cys115-linked PEP in closed-state loop stabilization. We provide a basis for evaluating novel UNAM analogues as potential MurA inhibitors. PUBLIC SIGNIFICANCE: MurA is a critical enzyme involved in bacterial cell wall biosynthesis and is involved in antibiotic resistance development. UNAM can remain in the target protein's active site for an extended time compared to its natural substrate, UNAG. The prolonged interaction of this highly stable complex known as the 'dormant complex' comprises UNAM-PEP-MurA and offers insights into antibiotic development, providing potential options against drug-resistant bacteria and advancing our understanding of microbial biology.
Collapse
Affiliation(s)
- Maycon Vinicius Damasceno de Oliveira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Kauê S da Costa
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Anderson H Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
2
|
Rodrigues Garcia T, Freire PDTC, da Silva AW, Ferreira MKA, Rebouças EDL, Mendes FRS, Marinho EM, Marinho MM, Teixeira AMR, Marinho ES, Bandeira PN, de Menezes JESA, Dos Santos HS. Anxiolytic and anticonvulsant effect of Ibuprofen derivative through GABAergic neuromodulation in adult Zebrafish. J Biomol Struct Dyn 2023; 41:12055-12062. [PMID: 36695084 DOI: 10.1080/07391102.2023.2170915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023]
Abstract
Anxiety and epilepsy affect millions of people worldwide, and the treatment of these pathologies involves the use of Benzodiazepines, drugs that have serious adverse effects such as dependence and sedation, so the discovery of new anxiolytic and antiepileptic drugs are necessary. Many routes for synthesizing ibuprofen derivatives have been developed, and these derivatives have shown promising pharmacological effects. Therefore, this study aims to evaluate its anxiolytic and anticonvulsant effect against the adult Zebrafish animal model of Ibuprofen (IBUACT) and its interaction with the GABAergic receptor through in silico studies. The light/dark preference test (Scototaxis test) was used to evaluate the anxiolytic behavior of adult Zebrafish acutely treated with IBUACT and Diazepam, and their anticonvulsant effects were investigated through the pentylenetetrazol (PTZ)-induced seizure model. Animals treated with IBUACT showed anxiolytic behavior similar to Diazepam, and pretreatment with flumazenil reversed this behavior. PTZ-induced seizures were delayed by IBUACT in all three stages and were shown to bind strongly in the Diazepam region of GABAA. In addition, this work presents evidence of new pharmacological applications of ibuprofen derivative in pathologies of the central nervous system (CNS), opening the horizon for new studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Antonio Wlisses da Silva
- Postgraduate Program in Biotechnology, RENORBIO, State University of Ceara, Fortaleza, CE, Brazil
| | | | | | | | | | | | - Alexandre Magno Rodrigues Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Postgraduate Program in Biotechnology, RENORBIO, State University of Ceara, Fortaleza, CE, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, State University of Ceara, Limoeiro do Norte, CE, Brazil
- State University of Ceara, Graduate Program in Natural Sciences, Fortaleza, CE, Brazil
| | | | | | - Helcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Postgraduate Program in Biotechnology, RENORBIO, State University of Ceara, Fortaleza, CE, Brazil
- State University of Vale do Acaraú, Chemistry Course, Sobral, CE, Brazil
- State University of Ceara, Graduate Program in Natural Sciences, Fortaleza, CE, Brazil
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Tolufashe GF, Sabe VT, Ibeji CU, Ntombela T, Govender T, Maguire GEM, Kruger HG, Lamichhane G, Honarparvar B. Structure and Function of L,D- and D,D-Transpeptidase Family Enzymes from Mycobacterium tuberculosis. Curr Med Chem 2020; 27:3250-3267. [PMID: 30501595 DOI: 10.2174/0929867326666181203150231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/28/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023]
Abstract
Peptidoglycan, the exoskeleton of bacterial cell and an essential barrier that protects the cell, is synthesized by a pathway where the final steps are catalysed by transpeptidases. Knowledge of the structure and function of these vital enzymes that generate this macromolecule in M. tuberculosis could facilitate the development of potent lead compounds against tuberculosis. This review summarizes the experimental and computational studies to date on these aspects of transpeptidases in M. tuberculosis that have been identified and validated. The reported structures of L,D- and D,D-transpeptidases, as well as their functionalities, are reviewed and the proposed enzymatic mechanisms for L,D-transpeptidases are summarized. In addition, we provide bioactivities of known tuberculosis drugs against these enzymes based on both experimental and computational approaches. Advancing knowledge about these prominent targets supports the development of new drugs with novel inhibition mechanisms overcoming the current need for new drugs against tuberculosis.
Collapse
Affiliation(s)
- Gideon F Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Victor T Sabe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Colins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Gyanu Lamichhane
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, United States
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
4
|
do Carmo AL, Bettanin F, Oliveira Almeida M, Pantaleão SQ, Rodrigues T, Homem-de-Mello P, Honorio KM. Competition Between Phenothiazines and BH3 Peptide for the Binding Site of the Antiapoptotic BCL-2 Protein. Front Chem 2020; 8:235. [PMID: 32309275 PMCID: PMC7145989 DOI: 10.3389/fchem.2020.00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/11/2020] [Indexed: 12/28/2022] Open
Abstract
The study of proteins and mechanisms involved in the apoptosis and new knowledge about cancer's biology are essential for planning new drugs. Tumor cells develop several strategies to gain proliferative advantages, including molecular alterations to evade from apoptosis. Failures in apoptosis could contribute to cancer pathogenesis, since these defects can cause the accumulation of dividing cells and do not remove genetic variants that have malignant potential. The apoptosis mechanism is composed by proteins that are members of BCL-2 and cysteine-protease families. BH3-only peptides are the “natural” intracellular ligands of BCL-2 family proteins. On the other hand, studies have proved that phenothiazine compounds influence the induction of cellular death. To understand the characteristics of phenothiazines and their effects on tumoral cells and organelles involved in the apoptosis, as well as evaluating their pharmacologic potential, we have carried out computational simulation with the purpose of relating the structures of the phenothiazines with their biological activity. Since the tridimensional (3D) structure of the target protein is known, we have employed the molecular docking approach to study the interactions between compounds and the protein's active site. Hereafter, the molecular dynamics technique was used to verify the temporal evolution of the BCL-2 complexes with phenothiazinic compounds and the BH3 peptide, the stability and the mobility of these molecules in the BCL-2 binding site. From these results, the calculation of binding free energy between the compounds and the biological target was carried out. Thus, it was possible to verify that thioridazine and trifluoperazine tend to increase the stability of the BCL-2 protein and can compete for the binding site with the BH3 peptide.
Collapse
Affiliation(s)
| | - Fernanda Bettanin
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | | - Tiago Rodrigues
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Paula Homem-de-Mello
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Kathia Maria Honorio
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.,Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
5
|
Sabe VT, Tolufashe GF, Ibeji CU, Maseko SB, Govender T, Maguire GEM, Lamichhane G, Honarparvar B, Kruger HG. Identification of potent L,D-transpeptidase 5 inhibitors for Mycobacterium tuberculosis as potential anti-TB leads: virtual screening and molecular dynamics simulations. J Mol Model 2019; 25:328. [PMID: 31656981 DOI: 10.1007/s00894-019-4196-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 08/28/2019] [Indexed: 11/26/2022]
Abstract
Virtual screening is a useful in silico approach to identify potential leads against various targets. It is known that carbapenems (doripenem and faropenem) do not show any reasonable inhibitory activities against L,D-transpeptidase 5 (LdtMt5) and also an adduct of meropenem exhibited slow acylation. Since these drugs are active against L,D-transpeptidase 2 (LdtMt2), understanding the differences between these two enzymes is essential. In this study, a ligand-based virtual screening of 12,766 compounds followed by molecular dynamics (MD) simulations was applied to identify potential leads against LdtMt5. To further validate the obtained virtual screening ranking for LdtMt5, we screened the same libraries of compounds against LdtMt2 which had more experimetal and calculated binding energies reported. The observed consistency between the binding affinities of LdtMt2 validates the obtained virtual screening binding scores for LdtMt5. We subjected 37 compounds with docking scores ranging from - 7.2 to - 9.9 kcal mol-1 obtained from virtual screening for further MD analysis. A set of compounds (n = 12) from four antibiotic classes with ≤ - 30 kcal mol-1 molecular mechanics/generalized born surface area (MM-GBSA) binding free energies (ΔGbind) was characterized. A final set of that, all β-lactams (n = 4), was considered. The outcome of this study provides insight into the design of potential novel leads for LdtMt5. Graphical abstract.
Collapse
Affiliation(s)
- Victor T Sabe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Gideon F Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Sibusiso B Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
6
|
Zhao F, Hou YJ, Zhang Y, Wang DC, Li DF. The 1-β-methyl group confers a lower affinity of l,d-transpeptidase Ldt Mt2 for ertapenem than for imipenem. Biochem Biophys Res Commun 2019; 510:254-260. [PMID: 30686533 DOI: 10.1016/j.bbrc.2019.01.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 11/19/2022]
Abstract
L,D-transpeptidases, widely distributed in bacteria and even in the difficult-to-treat ESKAPE pathogens, can confer antibacterial resistance against the traditional β-lactam antibiotics through bypass of the 4 → 3 transpeptide linkage. LdtMt2, a l,d-transpeptidase in Mycobacteria tuberculosis, is essential for bacterial virulence and is considered as a potential anti-tuberculosis target inhibited by carbapenems. Diverse interaction modes between carbapenems and LdtMt2 have been reported, there are only limited evidences to validate those interaction modes. Herein, we identified the stable binding states of two carbapenems, imipenem and ertapenem, via crystallographic and biochemical studies, discovered that they adopt similar binding conformations. We further demonstrate the absence of the 1-β-methyl group in imipenem and the presence of both Y308 and Y318 residues in LdtMt2 synergistically resulted in one order of magnitude higher affinity for imipenem than ertapenem. Our study provides a structural basis for the rational drug design and evolvement of novel carbapenems against bacterial L,D-transpeptidases.
Collapse
Affiliation(s)
- Fen Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Jie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-Feng Li
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Tolufashe GF, Halder AK, Ibeji CU, Lawal MM, Ntombela T, Govender T, Maguire GEM, Lamichhane G, Kruger HG, Honarparvar B. Inhibition of Mycobacterium tuberculosis
L,D-Transpeptidase 5 by Carbapenems: MD and QM/MM Mechanistic Studies. ChemistrySelect 2018. [DOI: 10.1002/slct.201803184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gideon F. Tolufashe
- Catalysis and Peptide Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Amit K. Halder
- Catalysis and Peptide Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Collins U. Ibeji
- Catalysis and Peptide Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Monsurat M. Lawal
- Catalysis and Peptide Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Glenn E. M. Maguire
- Catalysis and Peptide Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
- School of Chemistry and Physics; University of KwaZulu-Natal; 4001 Durban South Africa
| | - Gyanu Lamichhane
- Division of Infectious Diseases; School of Medicine; Johns Hopkins University; Baltimore MD 21205 USA
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit; School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| |
Collapse
|
8
|
Inhibition mechanism of L,D-transpeptidase 5 in presence of the β-lactams using ONIOM method. J Mol Graph Model 2018; 87:204-210. [PMID: 30554066 DOI: 10.1016/j.jmgm.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is one of the world's deadliest diseases resulting from infection by the bacterium, Mycobacterium tuberculosis (M.tb). The L,D-transpeptidase enzymes catalyze the synthesis of 3 → 3 transpeptide linkages which are predominant in the peptidoglycan of the M.tb cell wall. Carbapenems is class of β-lactams that inactivate L,D-transpeptidases by acylation, although differences in antibiotic side chains modulate drug binding and acylation rates. Herein, we used a two-layered our Own N-layer integrated Molecular Mechanics ONIOM method to investigate the catalytic mechanism of L,D-transpeptidase 5 (LdtMt5) by β-lactam derivatives. LdtMt5 complexes with six β-lactams, ZINC03788344 (1), ZINC02462884 (2), ZINC03791246 (3), ZINC03808351 (4), ZINC03784242 (5) and ZINC02475683 (6) were simulated. The QM region (high-level) comprises the β-lactam, one water molecule and the Cys360 catalytic residue, while the rest of the LdtMt5 residues were treated with AMBER force field. The activation energies (ΔG#) were calculated with B3LYP, M06-2X and ωB97X density functionals with 6-311++G(2d, 2p) basis set. The ΔG# for the acylation of LdtMt5 by the selected β-lactams were obtained as 13.67, 20.90, 22.88, 24.29, 27.86 and 28.26 kcal mol-1respectively. Several of the compounds showed an improved ΔG# when compared to the previously calculated energies for imipenem and meropenem for the acylation step for LdtMt5. This model provides further validation of the catalytic inhibition mechanism of LDTs with atomistic detail.
Collapse
|
9
|
Ntombela T, Fakhar Z, Ibeji CU, Govender T, Maguire GEM, Lamichhane G, Kruger HG, Honarparvar B. Molecular insight on the non-covalent interactions between carbapenems and L,D-transpeptidase 2 from Mycobacterium tuberculosis: ONIOM study. J Comput Aided Mol Des 2018; 32:687-701. [PMID: 29845435 DOI: 10.1007/s10822-018-0121-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/14/2018] [Indexed: 12/01/2022]
Abstract
Tuberculosis remains a dreadful disease that has claimed many human lives worldwide and elimination of the causative agent Mycobacterium tuberculosis also remains elusive. Multidrug-resistant TB is rapidly increasing worldwide; therefore, there is an urgent need for improving the current antibiotics and novel drug targets to successfully curb the TB burden. L,D-Transpeptidase 2 is an essential protein in Mtb that is responsible for virulence and growth during the chronic stage of the disease. Both D,D- and L,D-transpeptidases are inhibited concurrently to eradicate the bacterium. It was recently discovered that classic penicillins only inhibit D,D-transpeptidases, while L,D-transpeptidases are blocked by carbapenems. This has contributed to drug resistance and persistence of tuberculosis. Herein, a hybrid two-layered ONIOM (B3LYP/6-31G+(d): AMBER) model was used to extensively investigate the binding interactions of LdtMt2 complexed with four carbapenems (biapenem, imipenem, meropenem, and tebipenem) to ascertain molecular insight of the drug-enzyme complexation event. In the studied complexes, the carbapenems together with catalytic triad active site residues of LdtMt2 (His187, Ser188 and Cys205) were treated at with QM [B3LYP/6-31+G(d)], while the remaining part of the complexes were treated at MM level (AMBER force field). The resulting Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) for all complexes showed that the carbapenems exhibit reasonable binding interactions towards LdtMt2. Increasing the number of amino acid residues that form hydrogen bond interactions in the QM layer showed significant impact in binding interaction energy differences and the stabilities of the carbapenems inside the active pocket of LdtMt2. The theoretical binding free energies obtained in this study reflect the same trend of the experimental observations. The electrostatic, hydrogen bonding and Van der Waals interactions between the carbapenems and LdtMt2 were also assessed. To further examine the nature of intermolecular interactions for carbapenem-LdtMt2 complexes, AIM and NBO analysis were performed for the QM region (carbapenems and the active residues of LdtMt2) of the complexes. These analyses revealed that the hydrogen bond interactions and charge transfer from the bonding to anti-bonding orbitals between catalytic residues of the enzyme and selected ligands enhances the binding and stability of carbapenem-LdtMt2 complexes. The two-layered ONIOM (B3LYP/6-31+G(d): Amber) model was used to evaluate the efficacy of FDA approved carbapenems antibiotics towards LdtMt2.
Collapse
Affiliation(s)
- Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Zeynab Fakhar
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Hatfield 0002, Pretoria, South Africa
| | - Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Gyanu Lamichhane
- Division of Infectious Diseases, School of Medicine, Center of Tuberculosis Research, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
10
|
Almeida MO, Costa CHS, Gomes GC, Lameira J, Alves CN, Honorio KM. Computational analyses of interactions between ALK-5 and bioactive ligands: insights for the design of potential anticancer agents. J Biomol Struct Dyn 2017; 36:4010-4022. [PMID: 29132261 DOI: 10.1080/07391102.2017.1404938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Activin Receptor-Like Kinase 5 (ALK-5) is related to some types of cancer, such as breast, lung, and pancreas. In this study, we have used molecular docking, molecular dynamics simulations, and free energy calculations in order to explore key interactions between ALK-5 and six bioactive ligands with different ranges of biological activity. The motivation of this work is the lack of crystal structure for inhibitor-protein complexes for this set of ligands. The understanding of the molecular structure and the protein-ligand interaction could give support for the development of new drugs against cancer. The results show that the calculated binding free energy using MM-GBSA, MM-PBSA, and SIE is correlated with experimental data with r2 = 0.88, 0.80, and 0.94, respectively, which indicates that the calculated binding free energy is in excellent agreement with experimental data. In addition, the results demonstrate that H bonds with Lys232, Glu245, Tyr249, His283, Asp351, and one structural water molecule play an important role for the inhibition of ALK-5. Overall, we discussed the main interactions between ALK-5 and six inhibitors that may be used as starting points for designing new molecules to the treatment of cancer.
Collapse
Affiliation(s)
- Michell O Almeida
- a Center of Natural Sciences and Humanities , Federal University of ABC , Santo Andre , SP , Brazil
| | - Clauber H S Costa
- b Laboratório de Planejamento e Desenvolvimento de Fármacos , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , CP 11101, 66075-110 , Belém , PA , Brazil
| | - Guelber C Gomes
- b Laboratório de Planejamento e Desenvolvimento de Fármacos , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , CP 11101, 66075-110 , Belém , PA , Brazil
| | - Jerônimo Lameira
- b Laboratório de Planejamento e Desenvolvimento de Fármacos , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , CP 11101, 66075-110 , Belém , PA , Brazil
| | - Claudio N Alves
- b Laboratório de Planejamento e Desenvolvimento de Fármacos , Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , CP 11101, 66075-110 , Belém , PA , Brazil
| | - Kathia M Honorio
- a Center of Natural Sciences and Humanities , Federal University of ABC , Santo Andre , SP , Brazil.,c School of Arts, Sciences and Humanities , University of São Paulo , Sao Paulo , Brazil
| |
Collapse
|
11
|
Fakhar Z, Govender T, Maguire GEM, Lamichhane G, Walker RC, Kruger HG, Honarparvar B. Differential flap dynamics in l,d-transpeptidase2 from mycobacterium tuberculosis revealed by molecular dynamics. MOLECULAR BIOSYSTEMS 2017; 13:1223-1234. [PMID: 28480928 DOI: 10.1039/c7mb00110j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the advances in tuberculosis treatment, TB is still one the most deadly infectious diseases and remains a major global health quandary. Mycobacterium tuberculosis (Mtb) is the only known mycobacterium with a high content of 3→3 crosslinks in the biosynthesis of peptidoglycan, which is negligible in most bacterial species. An Mtb lacking LdtMt2 leads to alteration of the colony morphology and loss of virulence which makes this enzyme an attractive target. Regardless of the vital role of LdtMt2 for cell wall survival, the impact of ligand binding on the dynamics of the β-hairpin flap is still unknown. Understanding the structural and dynamical behaviour of the flap regions provides clear insight into the design of the effective inhibitors against LdtMt2. Carbapenems, an specific class of β-lactam family, have been shown to inactivate this enzyme. Herein a comprehensive investigation of the flap dynamics of LdtMt2 complex with substrate and three carbapenems namely, ertapenem, imipenem and meropenem is discussed and analyzed for the first account using 140 ns molecular dynamics simulations. The structural features (RMSD, RMSF and Rg) derived by MD trajectories were analyzed. Distance analysis, particularly tip-tip SER135-ASN167 index, identified conformational changes in terms of flap opening and closure within binding process. Principal component analysis (PCA) was employed to qualitatively understand the divergent effects of different inhibitors on the dominant motion of each residue. To probe different internal dynamics induced by ligand binding, dynamic cross-correlation marix (DCCM) analysis was used. The binding free energies of the selected complexes were assessed using MM-GBSA method and per residue free energy decomposition analysis were performed to characterize the contribution of the key residues to the total binding free energies.
Collapse
Affiliation(s)
- Zeynab Fakhar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa. and School of Chemistry and Physics, University of KwaZulu-Natal, 4001, Durban, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ross C Walker
- GlaxoSmithKline PLC, 1250 S. Collegeville Rd., Collegeville, PA 19426, USA and Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
12
|
Non-classical transpeptidases yield insight into new antibacterials. Nat Chem Biol 2016; 13:54-61. [PMID: 27820797 PMCID: PMC5477059 DOI: 10.1038/nchembio.2237] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/31/2016] [Indexed: 01/30/2023]
Abstract
Bacterial survival requires an intact peptidoglycan layer, a three-dimensional exoskeleton that encapsulates the cytoplasmic membrane. Historically, the final steps of peptidoglycan synthesis are known to be carried out by D,D-transpeptidases, enzymes that are inhibited by the β-lactams, which constitute >50% of all antibacterials in clinical use. Here, we show that the carbapenem subclass of β-lactams are distinctly effective not only because they inhibit D,D-transpeptidases and are poor substrates for β-lactamases, but primarily because they also inhibit non-classical transpeptidases, namely the L,D-transpeptidases, which generate the majority of linkages in the peptidoglycan of mycobacteria. We have characterized the molecular mechanisms responsible for inhibition of L,D-transpeptidases of Mycobacterium tuberculosis and a range of bacteria including ESKAPE pathogens, and used this information to design, synthesize and test simplified carbapenems with potent antibacterial activity.
Collapse
|
13
|
Ruggiero A, Squeglia F, Romano M, Vitagliano L, De Simone A, Berisio R. Structure and dynamics of the multi-domain resuscitation promoting factor RpfB from Mycobacterium tuberculosis. J Biomol Struct Dyn 2016; 35:1322-1330. [PMID: 27420638 DOI: 10.1080/07391102.2016.1182947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
RpfB is multidomain protein that is crucial for Mycobacterium tuberculosis resuscitation from dormancy. This protein cleaves cell wall peptidoglycan, an essential bacterial cell wall polymer formed by glycan chains of β-(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) cross-linked by short peptide stems. RpfB is structurally complex being composed of five distinct domains, namely a catalytic, a G5 and three DUF348 domains. Here, we have undertaken a combined experimental and computation structural investigations on the entire protein to gain insights into its structure-function relationships. CD spectroscopy and light scattering experiments have provided insights into the protein fold stability and into its oligomeric state. Using the available structure information, we modeled the entire protein structure, which includes the two DUF348 domains whose structure is experimentally unknown, and we analyzed the dynamic behavior of RpfB using molecular dynamics simulations. Present results highlight an intricate mutual influence of the dynamics of the different protein domains. These data provide interesting clues on the functional role of non-catalytic domains of RpfB and on the mechanism of peptidoglycan degradation necessary to resuscitation of M. tuberculosis.
Collapse
Affiliation(s)
- Alessia Ruggiero
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Flavia Squeglia
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Maria Romano
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Luigi Vitagliano
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| | - Alfonso De Simone
- b Division of Molecular Biosciences , Imperial College London , London , UK
| | - Rita Berisio
- a Institute of Biostructures and Bioimaging , CNR , Naples , Italy
| |
Collapse
|
14
|
Bhattacharjee N, Field MJ, Simorre JP, Arthur M, Bougault CM. Hybrid Potential Simulation of the Acylation of Enterococcus faecium l,d-Transpeptidase by Carbapenems. J Phys Chem B 2016; 120:4767-81. [DOI: 10.1021/acs.jpcb.6b02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholus Bhattacharjee
- DYNAMO/DYNAMOP,
UMR 5075, Université Grenoble 1, CNRS, CEA, Institut de Biologie
Structurale, 71 Avenue des Martyrs,
CS 10090, 38044 Grenoble Cedex 9, France
| | - Martin J. Field
- DYNAMO/DYNAMOP,
UMR 5075, Université Grenoble 1, CNRS, CEA, Institut de Biologie
Structurale, 71 Avenue des Martyrs,
CS 10090, 38044 Grenoble Cedex 9, France
| | - Jean-Pierre Simorre
- RMN, UMR 5075,
Université Grenoble 1, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France
| | - Michel Arthur
- Centre de Recherche
des Cordeliers, Equipe 12, UMR S 872, Université Pierre et
Marie Curie-Paris 6, INSERM, Université Paris Descartes, Sorbonne
Paris Cité, 15 rue de l’Ecole
de Médecine, 75006 Paris, France
| | - Catherine M. Bougault
- RMN, UMR 5075,
Université Grenoble 1, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France
| |
Collapse
|