1
|
A R N, G K R. A deep learning and docking simulation-based virtual screening strategy enables the rapid identification of HIF-1α pathway activators from a marine natural product database. J Biomol Struct Dyn 2024; 42:629-651. [PMID: 37038705 DOI: 10.1080/07391102.2023.2194997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
Artificial Intelligence is hailed as a cutting-edge technology for accelerating drug discovery efforts, and our goal was to validate its potential in predicting pharmacological inhibitors of EGLN1 using a deep learning-based architecture, one of its subsidiaries. Egl nine homolog 1 (EGLN1) inhibition prevents poly ubiquitination-mediated proteosomal destruction HIF-1α. The pharmacological interventions aimed at stabilizing HIF-1α have the potential to be a promising treatment option for a range of human diseases, including ischemic stroke. To unveil a novel EGLN1 inhibitor from marine natural products, a custom-based virtual screening was carried out using a Deep Convolutional Neural Network (DCNN) architecture, docking, and molecular dynamics simulation. The custom DCNN model was optimized and further employed to screen marine natural products from the CMNPD database. The docking was performed as a secondary strategy for screened hits. Molecular dynamics (MD) and molecular mechanics/generalized Born surface area (MM-GBSA) were used to analyze inhibitor binding and identify key interactions. The findings support the claim that deep learning-based virtual screening is a rapid, reliable and accurate method of identifying highly contributing drug candidates (EGLN1 inhibitors). This study demonstrates that deep learning architecture can significantly accelerate drug discovery and development, and provides a solid foundation for using (Z)-2-ethylhex-2-enedioic acid [(Z)-2-ethylhex-2-enedioic acid] as a potential EGLN1 inhibitor for treating various health complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neelakandan A R
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Rajanikant G K
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
2
|
Satapathy P, Prakash JK, More SS, Chandramohan V, Zameer F. Structural modulation of dual oxidase (Duox) in Drosophila melanogaster by phyto-elicitors: A free energy study with molecular dynamics approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
3
|
Satapathy P, Prakash JK, Gowda VC, More SS, K M, Chandramohan V, Zameer F. Targeting Imd pathway receptor in Drosophila melanogaster and repurposing of phyto-inhibitors: structural modulation and molecular dynamics. J Biomol Struct Dyn 2020; 40:1659-1670. [PMID: 33050786 DOI: 10.1080/07391102.2020.1831611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Dysbiosis is a major cause of disease in an individual, generally initiated in the gastrointestinal tract. The gut, also known as the second brain, constitutes a major role in immune signaling. To study the immunity cascade, the Drosophila model was considered targeting the Imd pathway receptor (2F2L) located in the midgut. This receptor further initiates the immune signaling mechanism influenced by bacteria. To inhibit the Imd pathway, the crystal structure of Imd with PDB: 2F2L was considered for the screening of suitable ligand/inhibitor. In light of our previous studies, repurposing of anti-diabetic ligands from the banana plant namely lupeol (LUP), stigmasterol (STI), β-sitosterol (BST) and umbelliferone (UMB) were screened. This study identifies the potential inhibitor along with the tracheal toxin (TCT), a major peptidoglycan constituent of microbes. The molecular docking and molecular dynamics simulation of complexes 2F2L-MLD, 2F2L- CAP, 2F2L-LUP, 2F2L-BST, 2F2L-STI and 2F2L-UMB elucidates the intermolecular interaction into the inhibitory property of ligands. The results of this study infer LUP and UMB as better ligands with high stability and functionality among the screened candidates. This study provides insights into the dysbiosis and its amelioration by plant-derived molecules. The identified drugs (LUP & UMB) will probably act as an inhibitor against microbial dysbiosis and other related pathogenesis (diabetes and diabetic neuropathy). Further, this study will widen avenues in fly biology research and which could be used as a therapeutic model in the rapid, reliable and reproducible screening of phytobiologics in complementary and alternative medicine for various lifestyle associated complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pankaj Satapathy
- School of Basic and Applied Sciences, Department of Biological Sciences, Dayananda Sagar University, Bengaluru, Karnataka, India
| | - Jeevan Kallur Prakash
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| | - V Chirag Gowda
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| | - Sunil S More
- School of Basic and Applied Sciences, Department of Biological Sciences, Dayananda Sagar University, Bengaluru, Karnataka, India
| | - Muthuchelian K
- School of Basic and Applied Sciences, Department of Biological Sciences, Dayananda Sagar University, Bengaluru, Karnataka, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| | - Farhan Zameer
- School of Basic and Applied Sciences, Department of Biological Sciences, Dayananda Sagar University, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Sharma V, Wakode S. Investigating the role of N-terminal domain in phosphodiesterase 4B-inhibition by molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:4270-4278. [PMID: 32552529 DOI: 10.1080/07391102.2020.1780154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phosphodiesterase 4B (PDE4B) is a potential therapeutic target for the inflammatory respiratory diseases such as congestive obstructive pulmonary disease (COPD) and asthma. The sequence identity of ∼88% with its isoform PDE4D is the key barrier in developing selective PDE4B inhibitors which may help to overcome associated side effects. Despite high sequence identity, both isoforms differ in few residues present in N-terminal (UCR2) and C-terminal (CR3) involved in catalytic site formation. Previously, we designed and tested specific PDE4B inhibitors considering N-terminal residues as a part of the catalytic cavity. In continuation, current work thoroughly presents an MD simulation-based analysis of N-terminal residues and their role in ligand binding. The various parameters viz. root mean square deviation (RMSD), radius of gyration (Rg), root mean square fluctuation (RMSF), principal component analysis (PCA), dynamical cross-correlation matrix (DCCM) analysis, secondary structure analysis and residue interaction mapping were investigated to establish rational. Results showed that UCR2 reduced RMSF values for the metal binding pocket (31.5 ± 11 to 13.12 ± 6 Å2) and the substrate-binding pocket (38.8 ± 32 to 17.3 ± 11 Å2). UCR2 enhanced anti-correlated motion at the active site region that led to the improved ligand-binding affinity of PDE4B from -24.57 ± 3 to -35.54 ± 2 kcal/mol. Further, the atomic-level analysis indicated that T-π and π-π interactions between inhibitors and residues are vital forces that regulate inhibitor association to PDE4B with high affinity. In conclusion, UCR2, the N-terminal domain, embraces the dynamics of PDE4B active site and stabilizes PDE4B inhibitor interactions. Therefore the N-terminal domain needs to be considered while designing next-generation, selective PDE4B-inhibitors as potential anti-inflammatory drugs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vidushi Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences & Research, New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences & Research, New Delhi, India
| |
Collapse
|
5
|
Gangadharappa BS, Sharath R, Revanasiddappa PD, Chandramohan V, Balasubramaniam M, Vardhineni TP. Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors. J Biomol Struct Dyn 2019; 38:3757-3771. [DOI: 10.1080/07391102.2019.1667265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bhavya Somalapura Gangadharappa
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| | | | | | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| | | | - Teja Priya Vardhineni
- Biotecthology Skill Enhancement Program, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| |
Collapse
|
6
|
Synthesis, biological evaluation and docking study of N-(2-(3,4,5-trimethoxybenzyl)benzoxazole-5-yl) benzamide derivatives as selective COX-2 inhibitor and anti-inflammatory agents. Bioorg Chem 2018; 81:191-202. [DOI: 10.1016/j.bioorg.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
|
7
|
Kaur A, Pathak DP, Sharma V, Wakode S. Synthesis, molecular docking, and pharmacological evaluation of N-(2-(3,5-dimethoxyphenyl)benzoxazole-5-yl)benzamide derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Arch Pharm (Weinheim) 2018; 351:e1800008. [PMID: 29741797 DOI: 10.1002/ardp.201800008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 01/23/2023]
Abstract
A series of N-(2-(3,5-dimethoxyphenyl)benzoxazole-5-yl)benzamide derivatives (3am) was synthesized and evaluated for their in vitro inhibitory activity against COX-1 and COX-2. The compounds with considerable in vitro activity (IC50 < 1 μM) were evaluated in vivo for their anti-inflammatory potential by the carrageenan-induced rat paw edema method. Out of 13 newly synthesized compounds, 3a, 3b, 3d, 3g, 3j, and 3k were found to be the most potent COX-2 inhibitors in the in vitro enzymatic assay, with IC50 values in the range of 0.06-0.71 μM. The in vivo anti-inflammatory activity of these six compounds (3a, 3b, 3d, 3g, 3j, and 3k) was assessed by the carrageenan-induced rat paw edema method. Compounds 3d (84.09%), 3g (79.54%), and 3a (70.45%) demonstrated significant anti-inflammatory activity compared to the standard drug ibuprofen (65.90%) and were also found to be safer than ibuprofen, by ulcerogenic studies. A docking study was done using the crystal structure of human COX-2, to understand the binding mechanism of these inhibitors to the active site of COX-2.
Collapse
Affiliation(s)
- Avneet Kaur
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Dharam P Pathak
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Vidushi Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| |
Collapse
|
8
|
Himangini, Pathak DP, Sharma V, Kumar S. Designing novel inhibitors against falcipain-2 of Plasmodium falciparum. Bioorg Med Chem Lett 2018; 28:1566-1569. [PMID: 29602682 DOI: 10.1016/j.bmcl.2018.03.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/29/2022]
Abstract
Coumarin containing pyrazoline derivatives have been synthesized and tested as inhibitors of in vitro development of a chloroquine-sensitive (MRC-02) and chloroquine-resistant (RKL-2) strain of Plasmodium falciparum and in vivo Plasmodium berghei malaria. Docking study was also done on cysteine protease falcipain-2 which showed that the binding pose of C-14 molecule and epoxysuccinate, inhibitor of falcipain-2, binds in the similar pattern. The most active antimalarial compound was 3-(1-benzoyl-5-(4-flurophenyl)-4,5-dihydro-1H-pyrazol-3yl)-7-(diethyamino)-2H-chromen-2-one C-14, with an IC50 of 4.21 µg/ml provided complete protection to the infected mice at 24 mg/kg X 4 days respectively.
Collapse
Affiliation(s)
- Himangini
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, Pushp Vihar, Delhi 17, India.
| | - Dharam Pal Pathak
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, Pushp Vihar, Delhi 17, India
| | - Vidushi Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, Pushp Vihar, Delhi 17, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, Pushp Vihar, Delhi 17, India
| |
Collapse
|
9
|
Synthesis, biological evaluation and docking study of a new series of di-substituted benzoxazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorg Med Chem 2018; 26:891-902. [PMID: 29373271 DOI: 10.1016/j.bmc.2018.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 12/28/2022]
Abstract
A new series of substituted-N-(3,4-dimethoxyphenyl)-benzoxazole derivatives 13a-13p was synthesized and evaluated in vitro for their COX (I and II) inhibitory activity, in vivo anti-inflammatory and ulcerogenic potential. Compounds 13d, 13h, 13k, 13l and 13n exhibited significant COX-2 inhibitory activity and selectivity towards COX-2 over COX-1. These selected compounds were screened for their in vivo anti-inflammatory activity by carrageenan induced rat paw edema method. Among these compounds, 13d was the most promising analogs of the series with percent inhibition of 84.09 and IC50 value of 0.04 µM and 1.02 µM (COX-2 and COX-1) respectively. Furthermore, ulcerogenic study was performed and tested compounds (13d, 13h, 13k, 13l) demonstrated a significant gastric tolerance than ibuprofen. Molecular docking study was also performed with resolved crystal structure of COX-2 to understand the binding mechanisms of newly synthesized inhibitors in the active site of COX-2 enzyme and the results were found to be concordant with the biological evaluation studies of the compounds. These newly synthesized inhibitors also showed acceptable pharmacokinetic profile in the in silico ADME/T analyses.
Collapse
|
10
|
Sahu M, Siddiqui N, Sharma V, Wakode S. 5,6-Dihydropyrimidine-1(2H)-carbothioamides: Synthesis, in vitro GABA-AT screening, anticonvulsant activity and molecular modelling study. Bioorg Chem 2018; 77:56-67. [PMID: 29331765 DOI: 10.1016/j.bioorg.2017.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/26/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022]
Abstract
Even after considerable advances in the field of epilepsy treatment, convulsions are inefficiently controlled by standard drug therapy. Herein, a series of pyrimidine-carbothioamide derivatives 4(a-t) was designed as anticonvulsant agents by doing some important structural modifications in well-known anticonvulsant drugs. Two classical animal models were used for the in vivo anticonvulsant screening, maximum electroshock seizure (MES) and subcutaneous pentylenetetrazole (scPTZ) models; followed by motor impairment study by rotarod method. The most active compound 4g effectively suppressed seizure effect in both the animal models with median doses of 15.6 mg/kg (MES ED50), 278.4 mg/kg (scPTZ ED50) and 534.4 mg/kg (TD50) with no sign of neurotoxicity. Furthermore, in vitro GABA-AT enzyme activity assay of 4g showed inhibitory potency (IC50) of 12.23 μM. The docking study also favored the animal studies.
Collapse
Affiliation(s)
- Meeta Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research (Formerly, Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India
| | - Nadeem Siddiqui
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research (Formerly, Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India.
| | - Vidushi Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Mehrauli-Badarpur Road, Pushp Vihar, Sector-3, New Delhi 110017, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Mehrauli-Badarpur Road, Pushp Vihar, Sector-3, New Delhi 110017, India
| |
Collapse
|
11
|
Kumar V, Jhamb SS, Sobhia ME. Cell wall permeability assisted virtual screening to identify potential direct InhA inhibitors of Mycobacterium tuberculosis and their biological evaluation. J Biomol Struct Dyn 2017; 36:3274-3290. [PMID: 28974157 DOI: 10.1080/07391102.2017.1387176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The arising cases of isoniazid-resistance have motivated research interests toward new class of molecules known as direct InhA inhibitors. Here, a combine approach of shape-based pharmacophore and descriptor-based 2D QSAR was used to identify the potential direct InhA inhibitors. The approach is duly assisted with in vitro testing and molecular dynamics simulations. A combination of empirical parameters was derived to use as a filter for cell wall permeability while 2D QSAR was used as another filter to predict the biological activity. Both filters were applied to prioritize the molecules for biological evaluation against anti-TB activity. It led to 6 potential molecules which showed > 90% inhibition of H37Rv strain of Mycobacterium tuberculosis in BACTEC assay. Further, MMGBSA binding free energy of identified molecules was compared with available highly potent molecule, 5-hexyl-2-(2-methylphenoxy) phenol (IC50 = 5nM) using molecular dynamics simulations. It showed two molecules with comparatively higher affinity toward InhA as compared to potent molecule. It indicated the candidature of identified molecules to be further considered in anti-TB drug development pipeline.
Collapse
Affiliation(s)
- Vivek Kumar
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| | - Sarbjit Singh Jhamb
- b Common Biological Testing Lab (CBTL), Department of Pharmaceuticals , National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| | - M Elizabeth Sobhia
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| |
Collapse
|
12
|
Design, synthesis and evaluation of newer 5,6-dihydropyrimidine-2(1 H )-thiones as GABA-AT inhibitors for anticonvulsant potential. Bioorg Chem 2017; 74:166-178. [DOI: 10.1016/j.bioorg.2017.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
|
13
|
Sahu M, Siddiqui N, Naim MJ, Alam O, Yar MS, Sharma V, Wakode S. Design, Synthesis, and Docking Study of Pyrimidine-Triazine Hybrids for GABA Estimation in Animal Epilepsy Models. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201700146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Meeta Sahu
- Department of Pharmaceutical Chemistry; School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy); Jamia Hamdard; New Delhi India
| | - Nadeem Siddiqui
- Department of Pharmaceutical Chemistry; School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy); Jamia Hamdard; New Delhi India
| | - Mohd. Javed Naim
- Department of Pharmaceutical Chemistry; School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy); Jamia Hamdard; New Delhi India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry; School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy); Jamia Hamdard; New Delhi India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry; School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy); Jamia Hamdard; New Delhi India
| | - Vidushi Sharma
- Department of Pharmaceutical Chemistry; Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR); New Delhi India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry; Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR); New Delhi India
| |
Collapse
|
14
|
Shukla R, Shukla H, Sonkar A, Pandey T, Tripathi T. Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase. J Biomol Struct Dyn 2017; 36:2045-2057. [DOI: 10.1080/07391102.2017.1341337] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Amit Sonkar
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Tripti Pandey
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
15
|
Marimuthu P, Singaravelu K. Deciphering the crucial residues involved in heterodimerization of Bak peptide and anti-apoptotic proteins for apoptosis. J Biomol Struct Dyn 2017; 36:1637-1648. [PMID: 28511583 DOI: 10.1080/07391102.2017.1331863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
B-cell lymphoma 2 (Bcl-2) family proteins are the central regulators of apoptosis, functioning via mitochondrial outer membrane permeabilization. The family members are involved in several stages of apoptosis regulation. The overexpression of the anti-apoptotic proteins leads to several cancer pathological conditions. This overexpression is modulated or inhibited by heterodimerization of pro-apoptotic BH3 domain or BH3-only peptides to the hydrophobic groove present at the surface of anti-apoptotic proteins. Additionally, the heterodimerization displayed differences in binding affinity profile among the pro-apoptotic peptides binding to anti-apoptotic proteins. In light of discovering the novel peptide/drug molecules that contain the potential to inhibit specific anti-apoptotic protein, it is necessary to understand the molecular basis of recognition between the protein and its binding partner (peptide or ligand) along with its binding energies. Therefore, the present work focused on deciphering the molecular basis of recognition between pro-apoptotic Bak peptide binding to different anti-apoptotic (Bcl-xL, Bfl-1, Bcl-W, Mcl-1, and Bcl-2) proteins using advanced Molecular Dynamics (MD) approach such as Molecular Mechanics-Generalized Born Solvent Accessible. The results from our investigation revealed that the predicted binding free energies showed excellent correlation with the experimental values (r2 = .95). The electrostatic (ΔGele) contributions are the major component that drives the interaction between Bak peptides and different anti-apoptotic peptides. Additionally, van der Waals (ΔGvdw) energies also play an indispensible role in determining the binding free energy. Furthermore, the decomposition analysis highlighted the comprehensive information about the energy contributions of hotspot residues involved in stabilizing the interaction between Bak peptide and different anti-apoptotic proteins.
Collapse
Affiliation(s)
- Parthiban Marimuthu
- a Structural Bioinformatics Laboratory (SBL), Faculty of Science and Engineering, Biochemistry , Åbo Akademi University , Turku , FI , 20520 , Finland.,b Department of Biology , Albany State University , 504 College Drive, Albany , GA , USA
| | - Kalaimathy Singaravelu
- c Department of Information Technology , University of Turku , Turku , FI , 20520 , Finland
| |
Collapse
|