1
|
Lee SY, Chae CH, Zrínyi M, Che X, Choi JY, Cho DH. Characterization of a conjugated polysuccinimide-carboplatin compound. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:31-38. [PMID: 36575931 PMCID: PMC9806637 DOI: 10.4196/kjpp.2023.27.1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022]
Abstract
Carboplatin, an advanced anticancer drug with excellent efficacy against ovarian cancer, was developed to alleviate the side effects that often occur with cisplatin and other platinum-based compounds. Our study reports the in vitro characteristics, viability, and activity of cells expressing the inducible nitric oxide synthase (iNOS) gene after carboplatin was conjugated with polysuccinimide (PSI) and administered in combination with other widely used anticancer drugs. PSI, which has promising properties as a drug delivery material, could provide a platform for prolonging carboplatin release, regulating its dosage, and improving its side effects. The iNOS gene has been shown to play an important role in both cancer cell survival and inhibition. Herein, we synthesized a PSI-carboplatin conjugate to create a modified anticancer agent and confirmed its successful conjugation. To ensure its solubility in water, we further modified the structure of the PSI-carboplatin conjugate with 2-aminoethanol groups. To validate its biological characteristics, the ovarian cancer cell line SKOV-3 and normal ovarian Chinese hamster ovary cells were treated with the PSI-carboplatin conjugate alone and in combination with paclitaxel and topotecan, both of which are used in conventional chemotherapy. Notably, PSI-carboplatin conjugation can be used to predict changes in the genes involved in cancer growth and inhibition. In conclusion, combination treatment with the newly synthesized polymer-carboplatin conjugate and paclitaxel displayed anticancer activity against ovarian cancer cells but was not toxic to normal ovarian cancer cells, resulting in the development of an effective candidate anticancer drug without severe side effects.
Collapse
Affiliation(s)
- Sun Young Lee
- Department of Radiation Oncology, Jeonbuk National University Medical School, Jeonju 54907, Korea,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| | | | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1089, Hungary
| | - Xiangguo Che
- Department of Biochemistry & Cell Biology, School of Medicine, Kyungpook National University, Daegu 41940, Korea
| | - Je Yong Choi
- Department of Biochemistry & Cell Biology, School of Medicine, Kyungpook National University, Daegu 41940, Korea
| | - Dong-Hyu Cho
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea,Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Jeonju 54907, Korea,Correspondence Dong-Hyu Cho, E-mail:
| |
Collapse
|
2
|
Qin Y, Tang X, Chen J, Huang J, Wang D, Zhang X, Zhang Y, Wu F, Wang J. An LHRH peptide-conjugated ruthenium(II) complex as tumor-targeted theranostic anticancer agent. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Mohebbi S, Shariatipour M, Shafie B, Amini MM. Encapsulation of tamoxifen citrate in functionalized mesoporous silica and investigation of its release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Chanphai P, Thomas TJ, Tajmir-Riahi HA. Application and biomolecular study of functionalized folic acid-dendrimer nanoparticles in drug delivery. J Biomol Struct Dyn 2020; 39:787-794. [PMID: 31948357 DOI: 10.1080/07391102.2020.1717994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We determined the loading efficacy of folic acid - PAMAM - G3 and folic acid - PAMAM - G4 nanoparticles with doxorubicin (Dox), tamoxifen (Tam) and tetracycline (Tet) in aqueous solution at pH 7.2. Thermodynamic parameters ΔH0 -16 to -4 (kJ mol-1), ΔS0 31 to -0.3 (J mol-1K-1) and ΔG0 -14 to -11 (kJ mol-1) showed drug folic acid-PAMAM bindings are via ionic, H-bonding and van der Waals interactions. As acid - PAMAM size increased the stability and loading efficacy of drug-polymer conjugates were increased. The order of stability for drug-nanoparticles was doxorubicin > tetracycline > tamoxifen. TEM analysis showed major polymer morphological changes, upon drug encapsulation. Folic acid-PAMAM conjugates are effective drug delivery tools in vitro. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - H A Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
5
|
Gao A, Teng Y, Seyiti P, Yen Y, Qian H, Xie C, Li R, Lin Z. Using Omniscan-Loaded Nanoparticles as a Tumor-Targeted MRI Contrast Agent in Oral Squamous Cell Carcinoma by Gelatinase-Stimuli Strategy. NANOSCALE RESEARCH LETTERS 2019; 14:395. [PMID: 31889247 PMCID: PMC6937353 DOI: 10.1186/s11671-019-3214-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
In this study, the tumor-targeted MRI contrast agent was prepared with gelatinase-stimuli nanoparticles (NPs) and Omniscan (Omn) by double emulsion method. The size, distribution, morphology, stability, drug loading, and encapsulation efficiency of Omn-NPs were characterized. The macroscopic and microscopic morphological changes of NPs in response to gelatinases (collagenases IV) were observed. The MR imaging using Omn-NPs as a contrast agent was evaluated in the oral squamous cell carcinoma models with Omn as a control. We found clear evidence that the Omn-NPs were transformed by gelatinases and the signal of T1-weighted MRI sequence showed that the tumor-to-background ratio was significantly higher in Omn-NPs than in Omn. The peak point of time after injection was much later for Omn-NPs than Omn. This study demonstrates that Omn-NPs hold great promise as MRI contrast agent with improved specificity and prolonged circulation time based on a relatively simple and universal strategy.
Collapse
Affiliation(s)
- Antian Gao
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing, 210093, China
| | - Yuehui Teng
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Pakezhati Seyiti
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing, 210093, China
| | - Yingtzu Yen
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, 321 Zhongshan Road, Nanjing, 210093, China
| | - Hanqing Qian
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, 321 Zhongshan Road, Nanjing, 210093, China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Rutian Li
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, 321 Zhongshan Road, Nanjing, 210093, China.
| | - Zitong Lin
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
6
|
Pishavar E, Ramezani M, Hashemi M. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2019; 45:1931-1939. [PMID: 31609130 DOI: 10.1080/03639045.2019.1680995] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One strategy for cancer treatment is combination therapy using nanoparticles (NPs), which has resulted in enhanced anti-cancer effects and reduced cytotoxicity of therapeutic agents. Polyamidoamine dendrimer (PAMAM) has attracted considerable attention because of its potential applications ranging from drug delivery to molecular encapsulation and gene therapy. In this study, PAMAM G5 modified with cholesteryl chloroformate and alkyl-PEG was applied for co-delivery of doxorubicin (DOX) and plasmid encoding TRAIL into colon cancer cells, in vitro and in vivo. The results showed DOX was efficiently encapsulated in modified carrier (M-PAMAM) with loading level about 90%, and the resulting DOX-loaded M-PAMAM complexed with TRAIL plasmid showed much stronger antitumor effect than M-PAMAM containing DOX or TRAIL plasmid. On the other hand, the obtained results demonstrated that the treatment of mice bearing C26 colon carcinoma with this developed co-delivery system significantly decreased tumor growth rate. Thus, this modified PAMAM G5 can be considered as a potential carrier for co-delivery of drug and gene in cancer therapy.
Collapse
Affiliation(s)
- Elham Pishavar
- Pharmacutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmacutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Brzeziński M, Wedepohl S, Kost B, Calderón M. Nanoparticles from supramolecular polylactides overcome drug resistance of cancer cells. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Pánek J, Loukotová L, Hrubý M, Štěpánek P. Distribution of Diffusion Times Determined by Fluorescence (Lifetime) Correlation Spectroscopy. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiří Pánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206 Prague, Czech Republic
| | - Lenka Loukotová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206 Prague, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206 Prague, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 16206 Prague, Czech Republic
| |
Collapse
|
9
|
Chanphai P, Thomas T, Tajmir-Riahi H. Design of functionalized folic acid–chitosan nanoparticles for delivery of tetracycline, doxorubicin, and tamoxifen. J Biomol Struct Dyn 2018; 37:1000-1006. [DOI: 10.1080/07391102.2018.1445559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- P. Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec, Canada G9A 5H7
| | - T.J. Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - H.A. Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec, Canada G9A 5H7
| |
Collapse
|
10
|
Chanphai P, Tajmir-Riahi HA. Binding analysis of antioxidant polyphenols with PAMAM nanoparticles. J Biomol Struct Dyn 2017; 36:3487-3495. [PMID: 29019428 DOI: 10.1080/07391102.2017.1391124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dietary polyphenols are abundant micronutrients in our diet and paly major role in prevention of degenerative diseases. The binding efficacy of antioxidant polyphenols resveratrol, genistein, and curcumin with PAMAM-G3 and PAMAM-G4 nanoparticles was investigated in aqueous solution at physiological conditions, using multiple spectroscopic methods, TEM images, and docking studies. The polyphenol bindings are via hydrophilic, hydrophobic, and H-bonding contacts with resveratrol forming more stable conjugates. As PAMAM size increased the loading efficacy and the stability of polyphenol-polymer conjugates were increased. Polyphenol binding induced major alterations of dendrimer morphology. PAMAM nanoparticles are capable of delivery of polyphenols in vitro.
Collapse
Affiliation(s)
- P Chanphai
- a Department of Chemistry-Biochemistry, Physics , University of Québec , C. P. 500, Trois-Rivières , Québec G9A 5H7 , Canada
| | - H A Tajmir-Riahi
- a Department of Chemistry-Biochemistry, Physics , University of Québec , C. P. 500, Trois-Rivières , Québec G9A 5H7 , Canada
| |
Collapse
|
11
|
Chanphai P, Tajmir-Riahi H. DNA binding to folic acid-chitosan nanoconjugates. J Biomol Struct Dyn 2017; 36:2746-2751. [DOI: 10.1080/07391102.2017.1371078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- P. Chanphai
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec, G9A 5H7, Canada
| | - H.A. Tajmir-Riahi
- Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, Québec, G9A 5H7, Canada
| |
Collapse
|
12
|
Dezhampanah H, Esmaili M, Hasani L. Milk caseins as useful vehicle for delivery of dipyridamole drug. J Biomol Struct Dyn 2017; 36:1602-1616. [DOI: 10.1080/07391102.2017.1329100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hamid Dezhampanah
- Laboratory of Physical Chemistry, Faculty of Science, Department of Chemistry, University of Guilan, P.O. Box 1914, Rasht 0098, Iran
| | - Masoomeh Esmaili
- Laboratory of Physical Chemistry, Faculty of Science, Department of Chemistry, University of Guilan, P.O. Box 1914, Rasht 0098, Iran
| | - Leila Hasani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|