1
|
Brovarets’ OO, Muradova A, Hovorun DM. Novel horizons of the conformationally-tautomeric transformations of the G·T base pairs: quantum-mechanical investigation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2026510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alona Muradova
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
2
|
Kumar N, Gorai B, Gupta S, Shiva, Goel N. Extrapolation of hydroxytyrosol and its analogues as potential anti-inflammatory agents. J Biomol Struct Dyn 2020; 39:5588-5599. [PMID: 32672527 DOI: 10.1080/07391102.2020.1792990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Discovery of potential lead molecule is a challenging, and complex process which require lots of money, patience, and manpower. Human beings are using natural products, predominantly secondary metabolites, for this purpose since ancient time and they are still working on them as a potent source for drug discovery due to their wide structural diversity. Phenolic phytochemicals such as hydroxytyrosol and tyrosol are natural antioxidant and involved in many biological disease cure. Herein, we have carried out the quantum chemical calculations for conformational analysis, geometry optimization and computation of electronic as well as optical properties of hydroxytyrosol and its analogues (1a-1k) in terms of density functional theory by using Gaussian 09 program suite. The eventual charge transfer within the molecules has been confirmed by the analysis of frontier molecular orbitals. The molecular docking studies of 1a-1k with cyclooxygenase-2 showed the noticeable binding affinity as compared to other nonsteroidal anti-inflammatory drugs viz. aspirin, naproxen and celecoxib. Computation of pharmacokinetics and pharmacological properties confirmed the lead/drug like potential of these screened molecules. Furthermore, the molecular dynamics simulation of best three docked ligands (1f, 1h and 1k)-receptor complex and their binding free energy calculations reveals that these molecules bind in the catalytic cavity of cyclooxygenase-2 and found stable during the 100 ns of simulation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Naresh Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh, India
| | - Biswajit Gorai
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - Saurabh Gupta
- AgriGenome labs Pvt. Ltd. SINC, IKP Knowledge Park, Genome Valley, Hyderabad, India
| | - Shiva
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nidhi Goel
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Brovarets’ OO, Hovorun DM. A new era of the prototropic tautomerism of the quercetin molecule: A QM/QTAIM computational advances. J Biomol Struct Dyn 2019; 38:4774-4800. [PMID: 31711364 DOI: 10.1080/07391102.2019.1691660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
4
|
Brovarets' OO, Oliynyk TA, Hovorun DM. Novel Tautomerisation Mechanisms of the Biologically Important Conformers of the Reverse Löwdin, Hoogsteen, and Reverse Hoogsteen G *·C * DNA Base Pairs via Proton Transfer: A Quantum-Mechanical Survey. Front Chem 2019; 7:597. [PMID: 31620420 PMCID: PMC6759773 DOI: 10.3389/fchem.2019.00597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022] Open
Abstract
For the first time, in this study with the use of QM/QTAIM methods we have exhaustively investigated the tautomerization of the biologically-important conformers of the G*·C* DNA base pair-reverse Löwdin G*·C*(rWC), Hoogsteen G*'·C*(H), and reverse Hoogsteen G*'·C*(rH) DNA base pairs-via the single (SPT) or double (DPT) proton transfer along the neighboring intermolecular H-bonds. These tautomeric reactions finally lead to the formation of the novel G· C O 2 * (rWC), G N 2 * · C(rWC), G*'N2·C(rWC), G N 7 * · C(H), and G*'N7·C(rH) DNA base mispairs. Gibbs free energies of activation for these reactions are within the range 3.64-31.65 kcal·mol-1 in vacuum under normal conditions. All TSs are planar structures (Cs symmetry) with a single exception-the essentially non-planar transition state TSG*·C*(rWC)↔G+·C-(rWC) (C1 symmetry). Analysis of the kinetic parameters of the considered tautomerization reactions indicates that in reality only the reverse Hoogsteen G*'·C*(rH) base pair undergoes tautomerization. However, the population of its tautomerised state G*'N7·C(rH) amounts to an insignificant value-2.3·10-17. So, the G*·C*(rWC), G*'·C*(H), and G*'·C*(rH) base pairs possess a permanent tautomeric status, which does not depend on proton mobility along the neighboring H-bonds. The investigated tautomerization processes were analyzed in details by applying the author's unique methodology-sweeps of the main physical and chemical parameters along the intrinsic reaction coordinate (IRC). In general, the obtained data demonstrate the tautomeric mobility and diversity of the G*·C* DNA base pair.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bohomolets National Medical University, Kyiv, Ukraine
| | - Timothy A. Oliynyk
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Pathophysiology, Bohomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
5
|
Brovarets’ OO, Hovorun DM. Conformational diversity of the quercetin molecule: a quantum-chemical view. J Biomol Struct Dyn 2019; 38:2817-2836. [DOI: 10.1080/07391102.2019.1656671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
6
|
Abstract
Hydrogen bonds play a critical role in nucleobase studies as they encode genes, map protein structures, provide stability to the base pairs, and are involved in spontaneous and induced mutations. Proton transfer mechanism is a critical phenomenon that is related to the acid-base characteristics of the nucleobases in Watson-Crick base pairs. The energetic and dynamical behavior of the proton can be depicted from these characteristics and their adjustment to the water molecules or the surrounding ions. Further, new pathways open up in which protonated nucleobases are generated by proton transfer from the ionized water molecules and elimination of a hydroxyl radical in this review, the analysis will be focused on understanding the mechanism of untargeted mutations in canonical, wobble, Hoogsteen pairs, and mutagenic tautomers through the non-covalent interactions. Further, rare tautomer formation through the single proton transfer (SPT) and the double proton transfer (DPT), quantum tunneling in nucleobases, radiation-induced bystander effects, role of water in proton transfer (PT) reactions, PT in anticancer drugs-DNA interaction, displacement and oriental polarization, possible models for mutations in DNA, genome instability, and role of proton transfer using kinetic parameters for RNA will be discussed.
Collapse
|
7
|
Brovarets’ OO, Hovorun DM. Conformational transitions of the quercetin molecule via the rotations of its rings: a comprehensive theoretical study. J Biomol Struct Dyn 2019; 38:2865-2883. [DOI: 10.1080/07391102.2019.1645734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bohomolets National Medical University, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Pathophysiology, Bohomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
8
|
Brovarets’ OO, Hovorun DM. Key microstructural mechanisms of the 2-aminopurine mutagenicity: Results of extensive quantum-chemical research. J Biomol Struct Dyn 2019; 37:2716-2732. [DOI: 10.1080/07391102.2018.1495577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| |
Collapse
|
9
|
Kumar N, Gupta S, Chand Yadav T, Pruthi V, Kumar Varadwaj P, Goel N. Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation. J Biomol Struct Dyn 2018; 37:2355-2369. [PMID: 30047324 DOI: 10.1080/07391102.2018.1481457] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural products acquire massive structural and chemical diversity, which cannot be coordinated by any synthetic libraries for small molecules and they are continuing to inspire novel discoveries in health sciences. We have performed the computational calculations for geometry optimization and prediction of electronic and structural properties of some plant phenolic compounds through Gaussian 09 program. Energies of molecular orbitals were computed, to mimic out the stabilities arising from charge delocalization and intramolecular interactions. This process indicated the eventual charge transfer within the molecules. The molecular docking and ADMET properties of these compounds with a novel anticancer (HER2) and anti-inflammatory (COX-2) targets revealed that two molecules were capable of inhibiting both the targets, and could be used as multi target inhibitors. Furthermore, molecular dynamics simulation studies were performed to elucidate the binding mechanism and the comparison of inhibitor's binding mode with diverse biological activities as anticancer and anti-inflammatory agents. A high-quality association was reported among quantum chemical, ADMET, docking, dynamics and MMGBSA results. Communicated By Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Naresh Kumar
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee 247667 , Uttarakhand , India;,b Discipline of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Indore 453552, Madhya Pradesh , India
| | - Saurabh Gupta
- c Department of Bioinformatics , Indian Institute of Information Technology , Allahabad 211015 , India
| | - Tara Chand Yadav
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee 247667 , Uttarakhand , India
| | - Vikas Pruthi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee 247667 , Uttarakhand , India
| | - Pritish Kumar Varadwaj
- c Department of Bioinformatics , Indian Institute of Information Technology , Allahabad 211015 , India
| | - Nidhi Goel
- d Department of Chemistry, Institute of Science , Banaras Hindu University , Varanasi 221005 , India
| |
Collapse
|
10
|
Brovarets' OO, Tsiupa KS, Dinets A, Hovorun DM. Unexpected Routes of the Mutagenic Tautomerization of the T Nucleobase in the Classical A·T DNA Base Pairs: A QM/QTAIM Comprehensive View. Front Chem 2018; 6:532. [PMID: 30538979 PMCID: PMC6277528 DOI: 10.3389/fchem.2018.00532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/12/2018] [Indexed: 01/24/2023] Open
Abstract
In this paper using quantum-mechanical (QM) calculations in combination with Bader's quantum theory of "Atoms in Molecules" (QTAIM) in the continuum with ε = 1, we have theoretically demonstrated for the first time that revealed recently highly-energetic conformers of the classical A·T DNA base pairs - Watson-Crick [A·T(wWC)], reverse Watson-Crick [A·T(wrWC)], Hoogsteen [A·T(wH)] and reverse Hoogsteen [A·T(wrH)] - act as intermediates of the intrapair mutagenic tautomerization of the T nucleobase owing to the novel tautomerisation pathways: A·T(wWC)↔A·T*(w⊥ WC); A·T(wrWC)↔A·T O 2 * (w⊥ rWC); A·T(wH)↔A·T*(w⊥ H); A·T(wrH)↔A·T O 2 * (w⊥ rH). All of them occur via the transition states as tight ion pairs (A+, protonated by the N6H2 amino group)·(T-, deprotonated by the N3H group) with quasi-orthogonal geometry, which are stabilized by the participation of the strong (A)N6+H···O4-/O2-(T) and (A)N6+H···N3-(T) H-bonds. Established tautomerizations proceed through a two-step mechanism of the protons moving in the opposite directions along the intermolecular H-bonds. Initially, proton moves from the N3H imino group of T to the N6H2 amino group of A and then subsequently from the protonated N6+H3 amino group of A to the O4/O2 oxygen atom of T, leading to the products - A·T*(w⊥ WC), A·T O 2 * (w⊥ rWC), A·T*(w⊥ H), and A·T O 2 * (w⊥ rH), which are substantially non-planar, conformationally-labile complexes. These mispairs are stabilized by the participation of the (A)N6H/N6H'···N3(T) and (T)O2H/O4H···N6(A) H-bonds, for which the pyramidalized amino group of A is their donor and acceptor. The Gibbs free energy of activation of these mutagenic tautomerizations lies in the range of 27.8-29.8 kcal·mol-1 at T = 298.15 K in the continuum with ε = 1.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Andrii Dinets
- Department of Surgery #4, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pathophysiology, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
11
|
Brovarets’ OO, Tsiupa KS, Hovorun DM. Novel pathway for mutagenic tautomerization of classical А∙Т DNA base pairs via sequential proton transfer through quasi-orthogonal transition states: A QM/QTAIM investigation. PLoS One 2018; 13:e0199044. [PMID: 29949602 PMCID: PMC6021055 DOI: 10.1371/journal.pone.0199044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
In this paper we have theoretically predicted a novel pathway for the mutagenic tautomerization of the classical A∙T DNA base pairs in the free state, the Watson-Crick A·Т(WC), reverse Watson-Crick A·Т(rWC), Hoogsteen A·Т(H) and reverse Hoogsteen A·Т(rH) pairs, via sequential proton transfer accompanied by a significant change in the mutual orientation of the bases. Quantum-mechanical (QM) calculations were performed at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level in vacuum phase, along with Bader's quantum theory of Atoms in Molecules (QTAIM). These processes involve transition states (TSs) with quasi-orthogonal structures (symmetry C1), which are highly polar, tight ion pairs (A-, N6H2-deprotonated)∙(T+, O4/O2-protonated). Gibbs free energies of activation for the A∙T(WC) / A∙T(rWC) ↔ A*∙Т(rwWC) / A*∙Т(wWC) tautomeric transitions (~43.5 kcal∙mol-1) are lower than for the A∙T(H) / A∙T(rH) ↔ A*N7∙Т(rwH) / A*N7∙Т(wH) tautomerisations (~53.0 kcal∙mol-1) (rare tautomers are marked by an asterisk; w-wobble configured tautomerisation products). The (T)N3+H⋯N1-(A), (T)O4+H⋯N1-(A) / (T)N3+H⋯N1-(A) and (T)O2+H⋯N1-(A) H-bonds are found in the transition states TSA-·T+A·T(WC)↔A*·T(rwWC) / TSA-·T+A·T(rWC)↔A*·T(wWC). However, in the transition state TSA-·T+A·Т(H)↔A*N7·T(rwH) / TSA-·T+A·Т(rH)↔A*N7·T(wH), the (T)N3+H⋯N7-(A), (T)O4+H⋯N7-(A) / (T)N3+H⋯N7-(A) and (T)O2+H⋯N7-(A) H-bonds are supplemented by the attractive (T)O4+/O2+⋯N6-(A) van der Waals contacts. It was demonstrated that the products of the tautomerization of the classical A∙T DNA base pairs-A*∙Т(rwWC), A*N7∙Т(rwH) and A*N7∙Т(wH) (symmetry Cs)-further transform via double proton transfer into the energetically favorable wobble A∙T*(rwWC), A∙T*(rwH) and A∙T*O2(wH) base mispairs (symmetry Cs).
Collapse
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
12
|
Brovarets’ OO, Hovorun DM. Atomistic mechanisms of the double proton transfer in the H-bonded nucleobase pairs: QM/QTAIM computational lessons. J Biomol Struct Dyn 2018; 37:1880-1907. [DOI: 10.1080/07391102.2018.1467795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv, Ukraine
| |
Collapse
|
13
|
Brovarets' OO, Tsiupa KS, Hovorun DM. Surprising Conformers of the Biologically Important A·T DNA Base Pairs: QM/QTAIM Proofs. Front Chem 2018; 6:8. [PMID: 29536003 PMCID: PMC5835050 DOI: 10.3389/fchem.2018.00008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
For the first time novel high-energy conformers-A·T(wWC) (5.36), A·T(wrWC) (5.97), A·T(wH) (5.78), and A·T(wrH) (ΔG = 5.82 kcal·mol-1) (See Graphical Abstract) were revealed for each of the four biologically important A·T DNA base pairs - Watson-Crick A·T(WC), reverse Watson-Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of quantum-mechanical theory in the continuum with ε = 4 under normal conditions. Each of these conformers possesses substantially non-planar wobble (w) structure and is stabilized by the participation of the two anti-parallel N6H/N6H'…O4/O2 and N3H…N6 H-bonds, involving the pyramidalized amino group of the A DNA base as an acceptor and a donor of the H-bonding. The transition states - TSA·T(WC)↔A·T(wWC), TSA·T(rWC)↔A·T(wrWC), TSA·T(H)↔A·T(wH), and TSA·T(rH)↔A·T(wrH), controlling the dipole-active transformations of the conformers from the main plane-symmetric state into the high-energy, significantly non-planar state and vice versa, were localized. They also possess wobble structures similarly to the high-energy conformers and are stabilized by the participation of the N6H/N6H'…O4/O2 and N3H…N6 H-bonds. Discovered conformers of the A·T DNA base pairs are dynamically stable short-lived structures [lifetime τ = (1.4-3.9) ps]. Their possible biological significance and future perspectives have been briefly discussed.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
14
|
Brovarets' OO, Voiteshenko IS, Hovorun DM. Physico-chemical profiles of the wobble ↔ Watson-Crick G*·2AP(w) ↔ G·2AP(WC) and A·2AP(w) ↔ A*·2AP(WC) tautomerisations: a QM/QTAIM comprehensive survey. Phys Chem Chem Phys 2018; 20:623-636. [PMID: 29227488 DOI: 10.1039/c7cp05139e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study is intended to clarify in detail the tautomeric transformations of the wobble (w) G*·2AP(w) and A·2AP(w) nucleobase mispairs involving 2-aminopurine (2AP) into the Watson-Crick (WC) G·2AP(WC) and A*·2AP(WC) base mispairs (asterisks denote mutagenic tautomers of the DNA bases), respectively, by quantum-mechanical methods and Bader's Quantum Theory of Atoms in Molecules. Our previously reported methodology has been used, which allows the evolution of the physico-chemical parameters to be tracked along the entire internal reaction coordinate (IRC), not exclusively in the stationary states of these reactions. These biologically important G*·2AP(w) ↔ G·2AP(WC) and A·2AP(w) ↔ A*·2AP(WC) w ↔ WC tautomerisations, which are involved in mutagenic tautomerically-conformational pathways, determine the origin of the transitions and transversions induced by 2AP. In addition, it is established that they proceed through planar, highly stable, zwitterionic transition states and they exhibit similar physico-chemical profiles and stages of sequential intrapair proton transfer, followed by spatial rearrangement of the nucleobases relative to each other within the base pairs. These w ↔ WC tautomerisations occur non-dissociatively and are accompanied by a significant alteration in geometry (from wobble to Watson-Crick and vice versa) and redistribution of the specific intermolecular interactions, which can be divided into 10 patterns including AHB H-bonds and loosened A-H-B covalent bridges along the IRC of tautomerisation. Based on the redistribution of the geometrical and electron-topological parameters of the intrapair hydrogen bonds, exactly 9 key points have been allocated to characterize the evolution of these reactions.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | | | |
Collapse
|
15
|
Brovarets' OO, Tsiupa KS, Hovorun DM. The A·T(rWC)/A·T(H)/A·T(rH) ↔ A·T*(rwWC)/A·T*(wH)/A·T*(rwH) mutagenic tautomerization via sequential proton transfer: a QM/QTAIM study. RSC Adv 2018; 8:13433-13445. [PMID: 35542561 PMCID: PMC9079753 DOI: 10.1039/c8ra01446a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
In this study for the first time we have revealed by QM and QTAIM calculations at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory the novel routes of the mutagenic tautomerization of three biologically important A·T DNA base pairs – reverse Watson–Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) – followed by their rebuilding into the wobble (w) A·T*(rwWC), A·T*(wH) and A·T*(rwH) base mispairs by the participation of the mutagenic tautomers of the DNA bases (denoted by asterisk) and vice versa, thus complementing the physico-chemical property of the canonical A·T(WC) Watson–Crick DNA base pair reported earlier (Brovarets' et al., RSC Adv., 2015, 5, 99594–99605). These non-dissociative tautomeric transformations in the classical A·T(rWC), A·T(H) and A·T(rH) DNA base pairs proceed similarly to the canonical A·T(WC) DNA base pair via the intrapair sequential proton transfer with shifting towards major or minor grooves of DNA followed by further double proton transfer along the intermolecular H-bonds and are controlled by the plane symmetric and highly stable transition states – tight ion pairs formed by the A+ nucleobase, protonated by the N1/N7 nitrogen atoms, and T− nucleobase, deprotonated by the N3H imino group. Comparison of the estimated populations of the tautomerised states (10−21 to 10−14) with similar characteristics for the canonical A·T(WC) DNA base pair (10−8 to 10−7) leads authors to the conclusion, that only a base pair with WC architecture can be a building block of the DNA macromolecule as a genetic material, which is able for the evolutionary self-development. Among all four classical DNA base pairs, only A·T(WC) DNA base pair can ensure the proper rate of the spontaneous point errors of replication in DNA. We discovered tautomeric wobbling of the classical A·T DNA base pairs. This data evidence, that only a base pair with Watson–Crick architecture can be a building block of the DNA macromolecule as a genetic material, which is able for the evolutionary self-development.![]()
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
16
|
Srivastava R. Theoretical studies on the electronic and optoelectronic properties of [A.2AP(w)/A*.2AP(WC)/C.2AP(w)/C*.2AP(WC)/C.A(w)/C*.A(WC)]–Au8 mismatch nucleobase complexes. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1382737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ruby Srivastava
- Center for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
17
|
Brovarets' OO, Voiteshenko IS, Pérez-Sánchez H, Hovorun DM. A QM/QTAIM detailed look at the Watson-Crick↔wobble tautomeric transformations of the 2-aminopurine·pyrimidine mispairs. J Biomol Struct Dyn 2017; 36:1649-1665. [PMID: 28514900 DOI: 10.1080/07391102.2017.1331864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This work is devoted to the careful QM/QTAIM analysis of the evolution of the basic physico-chemical parameters along the intrinsic reaction coordinate (IRC) of the biologically important 2AP·T(WC)↔2AP·T*(w) and 2AP·C*(WC)↔2AP·C(w) Watson-Crick(WC)↔wobble(w) tautomeric transformations obtained at each point of the IRC using original authors' methodology. Established profiles reflect the high similarity between the courses of these processes. Basing on the scrupulous analysis of the profiles of their geometric and electron-topological parameters, it was established that the dipole-active WC↔w tautomerizations of the Watson-Crick-like 2AP·T(WC)/2AP·C*(WC) mispairs, stabilized by the two classical N3H⋯N1, N2H⋯O2 and one weak C6H⋯O4/N4 H-bonds, into the wobble 2AP·T*(w)/2AP·C(w) base pairs, respectively, joined by the two classical N2H⋯N3 and O4/N4H⋯N1 H-bonds, proceed via the concerted stepwise mechanism through the sequential intrapair proton transfer and subsequent large-scale shifting of the bases relative each other, through the planar, highly stable, zwitterionic transition states stabilized by the participation of the four H-bonds - N1+H⋯O4-/N4-, N1+H⋯N3-, N2+H⋯N3-, and N2+H⋯O2-. Moreover, it was found out that the 2AP·T(WC)↔2AP·T*(w)/2AP·C*(WC)↔2AP·C(w) tautomerization reactions occur non-dissociatively and are accompanied by the consequent replacement of the 10 unique patterns of the specific intermolecular interactions along the IRC. Obtained data are of paramount importance in view of their possible application for the control and management of the proton transfer, e.g. by external electric or laser fields.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Ivan S Voiteshenko
- b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Horacio Pérez-Sánchez
- c Computer Science Department , Bioinformatics and High Performance Computing (BIO-HPC) Research Group, Universidad Católica San Antonio de Murcia (UCAM) , Guadalupe, Murcia 30107 , Spain
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| |
Collapse
|
18
|
Azarhazin E, Izadyar M, Housaindokht MR. Molecular dynamic simulation and DFT study on the Drug-DNA interaction; Crocetin as an anti-cancer and DNA nanostructure model. J Biomol Struct Dyn 2017; 36:1063-1074. [PMID: 28330413 DOI: 10.1080/07391102.2017.1310060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this research, the interaction of Crocetin as an anti-cancer drug and a Dickerson DNA has been investigated. 25 ns molecular dynamic simulations of Crocetin and DNA composed of 12 base pairs and a sequence of d(CGCGAATTCGCG)2 were done in water. Three definite parts of the B-DNA were considered in analyzing the best interactive site from the thermodynamic point of view. Binding energy analysis showed that van der Waals interaction is the most important part related to the reciprocal O and H atoms of the Crocetin and DNA. Stabilizing interactions, obtained by ΔG calculations, showed that maximum and minimum interactions are related to the S1 and S3 regions, respectively. This means that the most probable van der Waals interaction site of the Dickerson B-DNA and Crocetin is located in the minor groove of DNA. Two sharp peaks at 2.55 and 1.75 Å in radial distribution functions of the PO⋯HO and NH⋯OC parts are related to new hydrogen bonds between the Crocetin and DNA in the complex which can be considered as the driving force of the anti-cancer mechanism of the Crocetin. Average values of 0.3 au and zero for the electron densities of the H⋯O bonds for DNA and complex, obtained by Quantum theory of atoms in molecules (QTAIM), means that the origin of DNA instability after complexation may be related to the H-bond denaturation by Crocetin. Finally, the evaluation of the dispersion interactions using the dispersion functional, -148.76 kcal.mol-1, confirmed the importance of the dispersion interaction in drug-DNA complex.
Collapse
Affiliation(s)
- Ebrahim Azarhazin
- a Faculty of Sciences, Department of Chemistry , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mohammad Izadyar
- a Faculty of Sciences, Department of Chemistry , Ferdowsi University of Mashhad , Mashhad , Iran
| | | |
Collapse
|
19
|
Brovarets' OO, Voiteshenko IS, Pérez-Sánchez H, Hovorun DM. A QM/QTAIM research under the magnifying glass of the DPT tautomerisation of the wobble mispairs involving 2-aminopurine. NEW J CHEM 2017. [DOI: 10.1039/c7nj00717e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a comprehensive survey of the changes of the physico-chemical parameters at each point of the IRC for the biologically important T·2AP*(w) ↔ T*·2AP(w) and G·2AP*(w) ↔ G*·2AP(w) DPT tautomerisation reactions involved in the point mutations (transitions and transversions) induced by 2-aminopurine (2AP) in DNA is provided.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Ivan S. Voiteshenko
- Department of Molecular Biotechnology and Bioinformatics
- Institute of High Technologies
- Taras Shevchenko National University of Kyiv
- 03022 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- 30107 Guadalupe (Murcia)
- Spain
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
20
|
Brovarets' OO, Pérez-Sánchez H. Whether the amino–imino tautomerism of 2-aminopurine is involved into its mutagenicity? Results of a thorough QM investigation. RSC Adv 2016. [DOI: 10.1039/c6ra24277d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2AP* mutagenic tautomer is able to induce only one incorporation error – transversion – by pairing through the H-bonds into the G·2AP* mispair.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- Murcia
- Spain
| |
Collapse
|