1
|
Dewaker V, Srivastava PN, Debnath U, Srivastava AK, Prabhakar YS. MD simulations for rational design of high-affinity HDAC4 inhibitors - Analysis of non-bonding interaction energies for building new compounds. Arch Biochem Biophys 2025; 764:110262. [PMID: 39662718 DOI: 10.1016/j.abb.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
This study investigates the contributions of non-bonding energy (NBE) to the efficacy of four HDAC4 co-crystallized inhibitors (HA3, 9F4, EBE, and TFG) through 100ns Molecular Dynamics (MD) simulations. These inhibitors contain hydroxamic acid (HA3, 9F4, EBE) or diol (TFG) as zinc-binding groups. In PDBs 2VQJ and 2VQM, the HDAC4 catalytic domain is in the 'open' conformation, while in PDBs 4CBT and 6FYZ, the same is in the 'closed' conformation. We identified HA3 as a weaker inhibitor because of the unfavorable NBE contributions from its carbonyl fragment (FR3) and hydroxamic fragment (FR1). To enhance NBE efficacy, we designed novel HA3 analogs (H01-H16) by introducing diverse fragments (-CF3, 2-hydroxyacetic acid, -NH-CH2-, 5-fluoro-2-phenyl pyrimidine, and chloroquinoline moieties). MD simulations revealed promising analogs (H02, H07, H08, H15) with strong NBEs and stable ligand-zinc retention (2.07-2.33 Å). These analogs exhibited strong relative binding free energies within their catalytic sites, highlighting their potential as novel HDAC4 inhibitors. The current study provides medicinal chemists with insights into non-covalent interactions, identifies key fragments for optimization, and offers a rational design strategy for developing more effective HDAC4 inhibitors.
Collapse
Affiliation(s)
- Varun Dewaker
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226017, India
| | - Pratik Narain Srivastava
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, 226017, India
| | - Utsab Debnath
- School of Health Sciences and Technology, UPES, Dehradun, 246007, India
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226017, India
| | - Yenamandra S Prabhakar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226017, India.
| |
Collapse
|
2
|
Ahmad B, Saeed A, Al-Amery A, Celik I, Ahmed I, Yaseen M, Khan IA, Al-Fahad D, Bhat MA. Investigating Potential Cancer Therapeutics: Insight into Histone Deacetylases (HDACs) Inhibitions. Pharmaceuticals (Basel) 2024; 17:444. [PMID: 38675404 PMCID: PMC11054547 DOI: 10.3390/ph17040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Histone deacetylases (HDACs) are enzymes that remove acetyl groups from ɛ-amino of histone, and their involvement in the development and progression of cancer disorders makes them an interesting therapeutic target. This study seeks to discover new inhibitors that selectively inhibit HDAC enzymes which are linked to deadly disorders like T-cell lymphoma, childhood neuroblastoma, and colon cancer. MOE was used to dock libraries of ZINC database molecules within the catalytic active pocket of target HDACs. The top three hits were submitted to MD simulations ranked on binding affinities and well-occupied interaction mechanisms determined from molecular docking studies. Inside the catalytic active site of HDACs, the two stable inhibitors LIG1 and LIG2 affect the protein flexibility, as evidenced by RMSD, RMSF, Rg, and PCA. MD simulations of HDACs complexes revealed an alteration from extended to bent motional changes within loop regions. The structural deviation following superimposition shows flexibility via a visual inspection of movable loops at different timeframes. According to PCA, the activity of HDACs inhibitors induces structural dynamics that might potentially be utilized to define the nature of protein inhibition. The findings suggest that this study offers solid proof to investigate LIG1 and LIG2 as potential HDAC inhibitors.
Collapse
Affiliation(s)
- Basharat Ahmad
- School of Life Science and Technology, Center for Informational Biology, University of Electronics Science and Technology of China, Chengdu 610056, China
| | - Aamir Saeed
- Department of Bioinformatics, Hazara University Mansehra, Mansehra 21120, Pakistan
| | - Ahmed Al-Amery
- Department of Physiology and Medical Physics, College of Medicine, University of Thi-Qar, Nasiriyah 64001, Iraq
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38280 Kayseri, Turkey;
| | - Iraj Ahmed
- Atta-Ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad 44000, Pakistan;
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Charbagh 19130, Pakistan;
| | - Imran Ahmad Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Nasiriyah 64001, Iraq;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
3
|
Drakontaeidi A, Pontiki E. A Review on Molecular Docking on HDAC Isoforms: Novel Tool for Designing Selective Inhibitors. Pharmaceuticals (Basel) 2023; 16:1639. [PMID: 38139766 PMCID: PMC10746130 DOI: 10.3390/ph16121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Research into histone deacetylases (HDACs) has experienced a remarkable surge in recent years. These enzymes are key regulators of several fundamental biological processes, often associated with severe and potentially fatal diseases. Inhibition of their activity represents a promising therapeutic approach and a prospective strategy for the development of new therapeutic agents. A critical aspect of their inhibition is to achieve selectivity in terms of enzyme isoforms, which is essential to improve treatment efficacy while reducing undesirable pleiotropic effects. The development of computational chemistry tools, particularly molecular docking, is greatly enhancing the precision of designing molecules with inherent potential for specific activity. Therefore, it was considered necessary to review the molecular docking studies conducted on the major isozymes of the enzyme in order to identify the specific interactions associated with each selective HDAC inhibitor. In particular, the most critical isozymes of HDAC (1, 2, 3, 6, and 8) have been thoroughly investigated within the scope of this review.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Kalhor H, Abolhasani H, Kalhor R, Komeili Movahhed T, Rahimi H. Interactions of heparin derivatives with recombinant human keratinocyte growth factor: Structural stability and bioactivity effect study. Proteins 2023; 91:542-554. [PMID: 36424813 DOI: 10.1002/prot.26448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Heparin and heparan sulfate are important glycosaminoglycans that can regulate the activities of many vital proteins, especially the fibroblast growth factor (FGF) family. Because FGF7 (KGF) has an important role in tissue repair and maintaining the integrity of the mucosal barrier, recombinant human keratinocyte growth factor (rhKGF, palifermin) has been approved for the treatment of wound healing and oral cavity. Due to heparin plays an important role in the KGF signaling pathway, a more detailed study of the drug-drug interactions (DDIs) between rhKGF and heparin at the atomic level and investigating their synergistic effect on each other in terms of biology, especially in silico, is necessary for a better understanding of DDIs. In this study, DDIs between rhKGF and low-molecular weight heparin types (LMWH) were investigated. In this regard, scrutiny of the influence of the synergistic heparin types on the structure and biostability of rhKGF is accomplished using computational methods such as molecular docking and molecular dynamic simulations (MDs). Subsequently, the motion behavior of rhKGF in interaction with LMWHs was evaluated based on eigenvectors by using principal component analysis (PCA). Also, the binding free energies of rhKGF-LMWH complexes were calculated by the molecular mechanics/Poisson-Boltzmann surface area (MM-BPSA) method. The result showed that rhKGF-idraparinux (-6.9 kcal/mol) and rhKGF-heparin (-6.0 kcal/mol) complexes had significant binding affinity as well as they had a more stable binding to rhKGF than to other LMWH during 100 ns simulation. However, in order to confirm the curative effect of these drugs, clinical trials must be done.
Collapse
Affiliation(s)
- Hourieh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,Department of Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Reyhaneh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.,Department of Genetics, Colleague of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | | | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Host-pathogen Interaction Department, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
5
|
Olawale F, Ogunyemi O, Folorunso IM. Repurposing clinically approved drugs as Wee1 checkpoint kinase inhibitors: an in silico investigation integrating molecular docking, ensemble QSAR modelling and molecular dynamics simulation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Femi Olawale
- Nano-Gene and Drug Delivery Group, Department of Biochemistry, School of life science, University of KwaZulu Natal, Durban, South Africa
| | - Oludare Ogunyemi
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University, Lokoja, Nigeria
| | - Ibukun Mary Folorunso
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| |
Collapse
|
6
|
Thirunavukkarasu MK, Suriya U, Rungrotmongkol T, Karuppasamy R. In Silico Screening of Available Drugs Targeting Non-Small Cell Lung Cancer Targets: A Drug Repurposing Approach. Pharmaceutics 2021; 14:59. [PMID: 35056955 PMCID: PMC8778223 DOI: 10.3390/pharmaceutics14010059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023] Open
Abstract
The RAS-RAF-MEK-ERK pathway plays a key role in malevolent cell progression in many tumors. The high structural complexity in the upstream kinases limits the treatment progress. Thus, MEK inhibition is a promising strategy since it is easy to inhibit and is a gatekeeper for the many malignant effects of its downstream effector. Even though MEK inhibitors are under investigation in many cancers, drug resistance continues to be the principal limiting factor to achieving cures in patients with cancer. Hence, we accomplished a high-throughput virtual screening to overcome this bottleneck by the discovery of dual-targeting therapy in cancer treatment. Here, a total of 11,808 DrugBank molecules were assessed through high-throughput virtual screening for their activity against MEK. Further, the Glide docking, MLSF and prime-MM/GBSA methods were implemented to extract the potential lead compounds from the database. Two compounds, DB012661 and DB07642, were outperformed in all the screening analyses. Further, the study results reveal that the lead compounds also have a significant binding capability with the co-target PIM1. Finally, the SIE-based free energy calculation reveals that the binding of compounds was majorly affected by the van der Waals interactions with MEK receptor. Overall, the in silico binding efficacy of these lead compounds against both MEK and PIM1 could be of significant therapeutic interest to overcome drug resistance in the near future.
Collapse
Affiliation(s)
- Muthu Kumar Thirunavukkarasu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
| | - Utid Suriya
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
| |
Collapse
|
7
|
Qureshi S, Khandelwal R, Madhavi M, Khurana N, Gupta N, Choudhary SK, Suresh RA, Hazarika L, Srija CD, Sharma K, Hindala MR, Hussain T, Nayarisseri A, Singh SK. A Multi-target Drug Designing for BTK, MMP9, Proteasome and TAK1 for the Clinical Treatment of Mantle Cell Lymphoma. Curr Top Med Chem 2021; 21:790-818. [PMID: 33463471 DOI: 10.2174/1568026621666210119112336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma characterized by the mutation and overexpression of the cyclin D1 protein by the reciprocal chromosomal translocation t(11;14)(q13:q32). AIM The present study aims to identify potential inhibition of MMP9, Proteasome, BTK, and TAK1 and determine the most suitable and effective protein target for the MCL. METHODOLOGY Nine known inhibitors for MMP9, 24 for proteasome, 15 for BTK and 14 for TAK1 were screened. SB-3CT (PubChem ID: 9883002), oprozomib (PubChem ID: 25067547), zanubrutinib (PubChem ID: 135565884) and TAK1 inhibitor (PubChem ID: 66760355) were recognized as drugs with high binding capacity with their respective protein receptors. 41, 72, 102 and 3 virtual screened compounds were obtained after the similarity search with compound (PubChem ID:102173753), PubChem compound SCHEMBL15569297 (PubChem ID:72374403), PubChem compound SCHEMBL17075298 (PubChem ID:136970120) and compound CID: 71814473 with best virtual screened compounds. RESULT MMP9 inhibitors show commendable affinity and good interaction profile of compound holding PubChem ID:102173753 over the most effective established inhibitor SB-3CT. The pharmacophore study of the best virtual screened compound reveals its high efficacy based on various interactions. The virtual screened compound's better affinity with the target MMP9 protein was deduced using toxicity and integration profile studies. CONCLUSION Based on the ADMET profile, the compound (PubChem ID: 102173753) could be a potent drug for MCL treatment. Similar to the established SB-3CT, the compound was non-toxic with LD50 values for both the compounds lying in the same range.
Collapse
Affiliation(s)
- Shahrukh Qureshi
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Naveesha Khurana
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Neha Gupta
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Saurav K Choudhary
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Revathy A Suresh
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Lima Hazarika
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Chillamcherla D Srija
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Mali R Hindala
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Sanjeev K Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
8
|
Kashyap K, Kakkar R. Pharmacophore-enabled virtual screening, molecular docking and molecular dynamics studies for identification of potent and selective histone deacetylase 8 inhibitors. Comput Biol Med 2020; 123:103850. [PMID: 32658783 DOI: 10.1016/j.compbiomed.2020.103850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 11/15/2022]
Abstract
Histone deacetylases (HDACs) play important roles in various biological processes, but are also notorious for their over-expression in numerous cancers and neurological disorders. Therefore, the development of isoform selective HDAC inhibitors is crucial in order to prevent any side effects of pan inhibition. This work focuses on identifying novel inhibitors for the selective inhibition of HDAC8, an isoform implicated in fatal diseases like T-cell lymphoma, colon cancer and childhood neuroblastoma. Virtual screening of the 'In-trials' subset of ZINC database has been carried out with the help of two pharmacophore models signifying potent and selective HDAC8 inhibition. A detailed molecular docking strategy, followed by molecular dynamics simulations and post-scoring with MM-GBSA calculations, has led to the identification of six promising molecules that have excellent binding with the HDAC8 active site. In order to establish the selectivity profile of these molecules, their binding to off-target HDAC isoforms has also been evaluated. Substitution analyses of the proposed inhibitors suggest that aromatic substituents that access the adjacent hydrophobic pocket of the HDAC8 active site have the potential to further enhance the HDAC8 selectivity.
Collapse
Affiliation(s)
- Kriti Kashyap
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
9
|
Xiong S, Liu W, Zhou Y, Mo Y, Liu Y, Chen X, Pan H, Yuan D, Wang Q, Chen T. Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian J Pharm Sci 2020; 15:518-528. [PMID: 32952674 PMCID: PMC7486547 DOI: 10.1016/j.ajps.2019.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/07/2019] [Accepted: 04/17/2019] [Indexed: 11/16/2022] Open
Abstract
Resveratrol (RES), a non-flavonoid polyphenol extracted from a wide variety of plants, exhibits neuroprotective activities against Parkinson's disease (PD). However, undesirable water solubility of RES reduces its oral bioavailability and demonstrates low efficacy in blood and brain, thus limiting its application. In present study, a nanocrystal formulation of RES (RES-NCs) was developed to enhance its oral bioavailability and delivery into brain for PD treatment. RES-NCs were fabricated with hydroxypropyl methylcellulose (HPMC) stabilizer via antisolvent precipitation approach. The obtained RES-NCs displayed the particle size of 222.54 ± 1.66 nm, the PDI of 0.125 ± 0.035, the zeta potential of -9.41 ± 0.37 mV, and a rapid in vitro dissolution rate. Molecular dynamics simulation of RES and HPMC revealed an interaction energy of -68.09 kJ/mol and a binding energy of -30.98 ± 0.388 kJ/mol, indicating that the spontaneous binding between the two molecules is through van der Waals forces. RES-NCs conferred enhanced cellular uptake as well as improved permeability relative to pure RES. In addition, RES-NCs were able to protect neurons against cytotoxicity induced by MPP+. Meanwhile, RES-NCs exerted no significant toxic effects on zebrafish embryos and larvae, and did not influence their survival and hatching rates. When orally administered to rats, RES-NCs exhibited more favorable pharmacokinetics than pure RES, with higher plasma and brain concentrations. More importantly, MPTP-induced PD mice showed notable improvements in behavior, attenuated dopamine deficiency, and elevated levels of dopamine and its metabolites after the treatment with RES-NCs. Furthermore, immunoblot analysis revealed that the neuroprotective role of RES-NCs may be at least partially mediated by Akt/Gsk3β signaling pathway. Taken altogether, RES-NCs can serve as a potential treatment modality for PD, offering means of improving RES oral bioavailability and brain accumulation.
Collapse
Affiliation(s)
- Sha Xiong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yile Zhou
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yousheng Mo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huafeng Pan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dongsheng Yuan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tongkai Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
10
|
Dewaker V, Srivastava AK, Arora A, Prabhakar YS. Investigation of HDAC8-ligands’ intermolecular forces through molecular dynamics simulations: profiling of non-bonding energies to design potential compounds as new anti-cancer agents. J Biomol Struct Dyn 2020; 39:4726-4751. [DOI: 10.1080/07391102.2020.1780940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Varun Dewaker
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ajay K. Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ashish Arora
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Yenamandra S. Prabhakar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
11
|
Lyu S, Wang W. Spectroscopic methodologies and computational simulation studies on the characterization of the interaction between human serum albumin and astragalin. J Biomol Struct Dyn 2020; 39:2959-2970. [DOI: 10.1080/07391102.2020.1758213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- ShaoLi Lyu
- Department of Ecology and Resource Engineering, Hetao College, Bayannur, Inner Mongolia, PR of China
| | - Wang Wang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR of China
| |
Collapse
|
12
|
Nepali K, Chang TY, Lai MJ, Hsu KC, Yen Y, Lin TE, Lee SB, Liou JP. Purine/purine isoster based scaffolds as new derivatives of benzamide class of HDAC inhibitors. Eur J Med Chem 2020; 196:112291. [PMID: 32325365 DOI: 10.1016/j.ejmech.2020.112291] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
This study reports the design, synthesis and evaluation of a series of histone deacetylase (HDAC) inhibitors containing purine/purine isoster as a capping group and an N-(2-aminophenyl)-benzamide unit. In vitro cytotoxicity studies reveal that benzamide 14 suppressed the growth of triple-negative breast cancer cells MDA-MB-231 (IC50 = 1.48 μM), MDA-MB-468 (IC50 = 0.65 μM), and liver cancer cells HepG2 (IC50 = 2.44 μM), better than MS-275 (5) and Chidamide (6). Compared to the well-known HDAC inhibitor SAHA, 14 showed a higher toxicity (IC50 = 0.33 μM) in three leukemic cell lines, K-562, KG-1 and THP-1. Moreover, 14 was found to be equally virulent in the HDAC-sensitive and -resistant gastric cell lines, YCC11 and YCC3/7, respectively, indicating the potential of 14 to overcome HDACi resistance. Furthermore, substantial inhibitory effects more pronounced than MS-275 (5) and Chidamide (6) were displayed by 14 towards HDAC1, 2 and 3 isoforms with IC50 values of 0.108, 0.585 and 0.563 μM respectively. Compound 14 also exhibited a potent antitumor efficacy in human MDA-MB-231 breast cancer xenograft mouse model, providing a potential lead for the development of anticancer agents.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan
| | - Ting-Yu Chang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Mei-Jung Lai
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan; TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan; Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Yun Yen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Sung-Bau Lee
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taiwan; Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan; TMU Biomedical Commercialization Center, Taipei Medical University, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
13
|
Kalhor H, Sadeghi S, Marashiyan M, Enssi M, Kalhor R, Ganji M, Rahimi H. In silico mutagenesis in recombinant human keratinocyte growth factor: Improvement of stability and activity in addition to decrement immunogenicity. J Mol Graph Model 2020; 97:107551. [PMID: 32032931 DOI: 10.1016/j.jmgm.2020.107551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
The recombinant human keratinocyte growth factor (rhKGF) is clinically applied to decrease the incidence and duration of cancer therapeutic agents. Particularly, it is extensively used for oral mucositis after chemotherapy-induced damage of different human cancers. However, the usage of rhKGF in treatment is limited owing to its short half-life, poor stability, immunogenicity, tendency to aggregate, and side effects. Therefore, there is a need to enhance the stability and to reduce immunogenicity of rhKGF for therapeutic applications. In this study, the stability, activity, and immunogenicity of rhKGF were improved using computational methods. The several mutations were generated based on sequence alignment, amino acids physic-chemical properties, and the structure simulation. The 3D structure of rhKGF and proposed mutants were predicted by Modeller v9.15 program, and then were evaluated using PROSESS, PROCHECK, and ProSA web tools. Afterwards, the effect of these mutants on rhKGF structure, stability, activity, and its interaction with fibroblast growth factor receptor2-IIb (FGFR2-IIb) was analyzed through utilizing GROMACS molecular dynamics simulations and docking tools, respectively. Also, binding free energies were calculated by the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. We found that F63Y, R121K, and combine1 (K38R, F63Y, K72E, N105S) mutants lead to reduction of the number of T-cell epitopes. However, all of the selected mutants, except for R121K, could considerably increase stability and affinity of the rhKGF to FGFR2-IIb, in silico. In conclusion, this study, for the first time, offered that the combine1 and F63Y mutants could highly improve the stability and activity of rhKGF and even reduce immunogenicity without having any significant effect on the biological functions of rhKGF.
Collapse
Affiliation(s)
- Hourieh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahya Marashiyan
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Maryam Enssi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, IR, Iran.
| | - Reyhaneh Kalhor
- Department of Genetics, Colleague of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran.
| | - Maziar Ganji
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Kumboonma P, Saenglee S, Senawong T, Phaosiri C. Histone Deacetylase Inhibitors and Antioxidants From the Root of Gluta usitata. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19895370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new glycoside, glutacoside (1), as well as 6 known compounds was isolated and identified from the root of Gluta usitata. Their structures were determined by Infrared spectroscopy, Mass spectroscopy, and 1-Dimensional and 2-dimensional nuclear magnetic resonance spectroscopy data. The histone deacetylase (HDAC) inhibitory and antioxidant activities of the obtained compounds were evaluated. Molecular docking experiments of the selected compound with representatives of class I (HDAC2 and HDAC8) and class II (HDAC4 and HDAC7) HDAC isoforms displayed potential isoform-selective HDAC inhibitors. Molecular docking data showed consistent results to the in vitro experiments with the highest potency against HDAC8. The docking studies suggested that the phenolic and carbonyl group can be favorably accommodated at the gorge region of the binding site. Furthermore, the phenolic groups also acted as major roles for antioxidant activities.
Collapse
Affiliation(s)
- Pakit Kumboonma
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Somprasong Saenglee
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Thailand
| | - Thanaset Senawong
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Thailand
| | - Chanokbhorn Phaosiri
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Thailand
| |
Collapse
|
15
|
Wu C, Li B, Zhang Y, Chen T, Chen C, Jiang W, Wang Q, Chen T. Intranasal delivery of paeoniflorin nanocrystals for brain targeting. Asian J Pharm Sci 2019; 15:326-335. [PMID: 32636950 PMCID: PMC7327772 DOI: 10.1016/j.ajps.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022] Open
Abstract
Paeoniflorin (PA) is an anti-Parkinson Chinese medicine with inferior bioavailability and difficulty in delivery to the brain. This research is to develop an efficacious PA nanocrystal formulation (PA-NCs) that is suitable for intranasal administration to treat Parkinson's disease (PD). PA-NCs were fabricated through an antisolvent precipitation method using TPGS as the stabilizer. The rod-shaped PA-NCs had particle size of 139.6 ± 1.3 nm and zeta potential of −23.2 ± 0.529 mV. A molecular dynamics simulation indicated that van der Waals forces are the primary drivers of interactions between PA and TPGS. In the ex vivo nasal mucosa permeation assay, the cumulative drug release at 24 h was 87.14% ± 5.34%, which was significantly higher than that of free PA. PA-NCs exhibited substantially improved cellular uptake as well as permeability on Calu-3 cells as compared to PA alone. FRET imaging analysis demonstrated that intact NCs could be internalized into Calu-3 cells. Moreover, PA-NCs conferred desirable protective effect against MPP+-induced SH-SY5Y cellular damage. Pharmacokinetic studies revealed a higher PA concentration in the brain following intranasal delivery of PA-NCs. In summary, the intranasal administration of PA-NCs is a promising treatment strategy for PD.
Collapse
Affiliation(s)
- Chaoyin Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Benyue Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tingting Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chuangrong Chen
- Science and Technology Department, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wei Jiang
- Department of Radiology, Sun Yet-sen Memorial Hospital, Sun Yet-sen University, Guangzhou 510120, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tongkai Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
16
|
Amin SA, Adhikari N, Jha T. Development of decision trees to discriminate HDAC8 inhibitors and non-inhibitors using recursive partitioning. J Biomol Struct Dyn 2019; 39:1-8. [DOI: 10.1080/07391102.2019.1661876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sk. Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
17
|
Forouzesh M, Askerovich Mamedov A, Pourabadeh A, Hosseini M, Hosseinzadeh G, Arezumand R. Rational MD simulations for improvement the affinity of nanobody against PlGF (placenta growth factor): mutagenesis based on electrostatic interactions. J Biomol Struct Dyn 2019; 38:3750-3756. [PMID: 31524085 DOI: 10.1080/07391102.2019.1664327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AbbreviationsCOMcenter of mass distanceMDmolecular dynamicsMM-PBSAMolecular Mechanics Poisson-Boltzmann Surface AreaNbnanobodyPlGFplacenta growth factorRgradius of gyrationRMSDroot mean-square deviationSASAsolvent-accessible surface areaVEGFvascular endothelial growth factor.
Collapse
Affiliation(s)
- Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Adil Askerovich Mamedov
- Department of Pediatric Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Amirasad Pourabadeh
- Department of Textile Engineering, Islamic Azad University, Yazd Branch, Yazd, Iran
| | - Mojgan Hosseini
- Department of Science, Islamshahr Branch, Islamic Azad University, Islamshahr, Tehran, Iran
| | | | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| |
Collapse
|
18
|
Alves Avelar LA, Ruzic D, Djokovic N, Kurz T, Nikolic K. Structure-based design of selective histone deacetylase 6 zinc binding groups. J Biomol Struct Dyn 2019; 38:3166-3177. [PMID: 31382868 DOI: 10.1080/07391102.2019.1652687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The binding site of the second catalytic domain of human histone deacetylase 6 (HDAC6 CDII) has structural features that differ from the other human orthologues, being also mainly responsible for the overall enzymatic activity of this isoform. Aiming to identify new fragments as a possible novel selective zinc binding group (ZBG) for HDAC6 CDII, two fragment libraries were designed: one library consisting of known chelators and a second one using the fragments of the ZINC15 database. The most promising fragments identified in a structure-based virtual screening of designed libraries were further evaluated through molecular docking and molecular dynamics simulations. An interesting benzimidazole fragment was selected from the in silico studies and presented as potential zing binding group for the development of novel HDAC6 selective inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Leandro A Alves Avelar
- Institut Für Pharmazeutische Und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Thomas Kurz
- Institut Für Pharmazeutische Und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Uba AI, Weako J, Keskin Ö, Gürsoy A, Yelekçi K. Examining the stability of binding modes of the co-crystallized inhibitors of human HDAC8 by molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:1751-1760. [PMID: 31057077 DOI: 10.1080/07391102.2019.1615989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Histone deacetylase (HDAC) 8 has been implicated as a potential therapeutic target in a variety of cancers, neurodegenerative disorders, metabolic dysregulation and autoimmune and inflammatory diseases. Several nonselective HDAC inhibitors have been co-crystallized with HDAC8. Molecular dynamics (MD) studies may yield valuable information on the structural stabilities of the complexes over time as determined by various pharmacophore features of the co-crystallized inhibitors. Here, using 11 unmodified X-ray crystal structures of human HDAC8 (complexes) structure-based pharmacophore models were built and clustered based on distance - a function of the number of common pharmacophore features and the root-mean-squared displacement between the matching features. Based on this information, a total of seven complexes (1T64, 1W22, 3RQD, 3SFF, 3F0R, 5VI6 and 5FCW) were submitted to unrestrained 50 ns-MD simulations using nanoscale MD (NAMD) software. 1T64 (HDAC8 in complex with TSA) was found to show the highest stability over time, presumably because of the TSA's ability to span HDAC8 catalytic channel and form a strong ionic interaction with zinc metal ion. Other stable complexes were 1W22, 3SFF, 3F0R and 5FCW. However, 3RQD and 5VI6 showed relative instability over 50 ns time period. This may be attributed to bulkiness of the capping groups of both largazole thiol and trapoxin A, making them unable to fit well into the active site of HDAC8. They rather formed steric clashes with residues on loop regions near the entrance to the channel. Thus, 1T64 and similar crystal structures may be good candidates for HDAC8 structural dynamics studies and inhibitor design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, Istanbul, Turkey
| | - Jackson Weako
- Computational Biology and Bioinformatics Department, Faculty of Science and Engineering, Koç University, Sariyer/Istanbul, Turkey
| | - Özlem Keskin
- Computational Biology and Bioinformatics Department, Faculty of Science and Engineering, Koç University, Sariyer/Istanbul, Turkey
| | - Attila Gürsoy
- Computational Biology and Bioinformatics Department, Faculty of Science and Engineering, Koç University, Sariyer/Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
20
|
Zhang Y, Ying JB, Hong JJ, Li FC, Fu TT, Yang FY, Zheng GX, Yao XJ, Lou Y, Qiu Y, Xue WW, Zhu F. How Does Chirality Determine the Selective Inhibition of Histone Deacetylase 6? A Lesson from Trichostatin A Enantiomers Based on Molecular Dynamics. ACS Chem Neurosci 2019; 10:2467-2480. [PMID: 30784262 DOI: 10.1021/acschemneuro.8b00729] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a key role in a variety of neurological disorders, which makes it attractive drug target for the treatment of Alzheimer's disease, Parkinson's disease, and memory/learning impairment. The selectivity of HDAC6 inhibitors (sHDAC6Is) are widely considered to be susceptible to the sizes of their Cap group and the physicochemical properties of their linker or zinc-binding group, which makes the discovery of new sHDAC6Is extremely difficult. With the discovery of the distinct selectivity between Trichostatin A (TSA) enantiomers, the chirality residing in the connective units between TSA's Cap and linker shows a great impact on its selectivity. However, the mechanism underlining ( S)-TSA's selectivity is still elusive, and the way chirality switches the selective ( S)-TSA to nonselective ( R)-TSA is unknown. In this study, multiple computational approaches were collectively applied to explore, validate, and differentiate the binding modes of two TSA enantiomers in HDACs (especially the HDAC6) at atomic level. First, two nonconservative residues (G200/M205 and Y197/F202 in HDAC1/6) in loop3 and four conservative residues deep inside the hydrophobic binding pocket were discovered as the decisive residues of ( S)-TSA's selectivity toward HDAC6. Then, a novel mechanism underlying the selectivity of ( S)-TSA toward HDAC6 was proposed, which was composed of the trigger by two nonconservative residues F202 and M205 in HDAC6 and a subsequently improved fit of ( S)-TSA deep inside HDAC6's hydrophobic binding pocket. TSA enantiomers were used as a molecular probe to explore the mechanism underlying sHDAC6Is' selectivity in this study. Because of their decisive roles in ( S)-TSA's selectivity to HDAC6, both F202 and M205 in HDAC6 should be especially considered in the discovery of novel sHDAC6Is.
Collapse
Affiliation(s)
- Yang Zhang
- Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Jun Biao Ying
- Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Jun Hong
- Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Cheng Li
- Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting Ting Fu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Yuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Guo Xun Zheng
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Xiao Jun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Wei Wei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| |
Collapse
|
21
|
Banerjee S, Adhikari N, Amin SA, Jha T. Structural exploration of tetrahydroisoquinoline derivatives as HDAC8 inhibitors through multi-QSAR modeling study. J Biomol Struct Dyn 2019; 38:1551-1564. [PMID: 31074329 DOI: 10.1080/07391102.2019.1617782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Histone deacetylase 8 (HDAC8) is one of the crucial HDACs responsible for influencing the epigenetic functions of the body. Overexpression of HDAC8 is found to be involved in numerous disease conditions such as tumorigenesis, cell proliferation, cancer, viral infections, neuronal disorders and other epigenetic diseases. Therefore, inhibition of HDAC8 is a primary method to combat these diseases. In this article, a multi-QSAR modeling study on tetrahydroisoquinoline derivatives was conducted to identify important contributions of the structural features of these compounds toward HDAC8 inhibition. All these QSAR modeling techniques were individually validated and justified the observations of each other. The results implied that the tetrahydroisoquinoline moiety may be effective as a cap group than as a linker moiety for HDAC8 inhibition. Different substitutions at the tetrahydroisoquinoline scaffold were also found to be crucial in modulating HDAC8 inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
- School of Pharmaceutical Technology, ADAMAS University, Kolkata, West Bengal, India
| | - Sk. Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
22
|
Dewaker V, Srivastava PN, Verma S, Prabhakar YS. Molecular dynamics study of HDAC8-largazole analogues co-crystals for designing potential anticancer compounds. J Biomol Struct Dyn 2019; 38:1197-1213. [DOI: 10.1080/07391102.2019.1598497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Varun Dewaker
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Pratik Narain Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Saroj Verma
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Yenamandra S. Prabhakar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| |
Collapse
|
23
|
Liu J, Zhu Y, He Y, Zhu H, Gao Y, Li Z, Zhu J, Sun X, Fang F, Wen H, Li W. Combined pharmacophore modeling, 3D-QSAR and docking studies to identify novel HDAC inhibitors using drug repurposing. J Biomol Struct Dyn 2019; 38:533-547. [PMID: 30938574 DOI: 10.1080/07391102.2019.1590241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (HDACs), a critical family of epigenetic enzymes, has emerged as a promising target for antitumor drugs. Here, we describe our protocol of virtual screening in identification of novel potential HDAC inhibitors through pharmacophore modeling, 3D-QSAR, molecular docking and molecular dynamics (MD) simulation. Considering the limitation of current virtual screening works, drug repurposing strategy was applied to discover druggable HDAC inhibitor. The ligand-based pharmacophore and 3D-QSAR models were established, and their reliability was validated by different methods. Then, the DrugBank database was screened, followed by molecular docking. MD simulation (100 ns) was performed to further study the stability of ligand binding modes. Finally, results indicated the hit DB03889 with high in silico inhibitory potency was suitable for further experimental analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yehua Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yufang He
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haohao Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junru Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinjie Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Fang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Kalhor H, Sadeghi S, Marashiyan M, Kalhor R, Aghaei Gharehbolagh S, Akbari Eidgahi MR, Rahimi H. Identification of new DNA gyrase inhibitors based on bioactive compounds from streptomyces: structure-based virtual screening and molecular dynamics simulations approaches. J Biomol Struct Dyn 2019; 38:791-806. [PMID: 30916622 DOI: 10.1080/07391102.2019.1588784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA gyrase enzyme has vital role in bacterial survival and can be considered as a potential drug target. Owing to the appearance of resistance to gyrase-targeted drugs, especially fluoroquinolone, screening new compounds which bind more efficiently to the mutant binding pocket is essential. Hence, in this work, using Smina Autodock and through structure-based virtual screening of StreptomeDB, several natural products were discovered based on the SimocyclinoneD8 (SD8) binding pocket of GyrA subunit of DNA gyrase. After evaluation of binding affinity, binding modes, critical interactions and physicochemical and pharmaceutical properties, three lead compounds were selected for further analysis. Afterward 60 ns molecular dynamics simulations were performed and binding free energies were calculated by the molecular mechanics/Poisson-Boltzmann surface area method. Also, interaction of the selected lead compounds with the mutated GyrA protein was evaluated. Results indicated that all of the selected compounds could bind to the both wild-type and mutated GyrA with the binding affinities remarkably higher than SimocyclinoneD8. Interestingly, we noticed that the selected compounds comprised angucycline moiety in their structure which could sufficiently interact with GyrA and block the DNA binding pocket of DNA gyrase, in silico. In conclusion, three DNA gyrase inhibitors were identified successfully which were highly capable of impeding DNA gyrase and can be considered as potential drug candidates for treatment of fluoroquinolone-resistant strains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hourieh Kalhor
- Department and Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Marashiyan
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reyhaneh Kalhor
- Department of Biology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Sanaz Aghaei Gharehbolagh
- Department of Medical Mycology & Parasitology School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Xiong S, Liu W, Li D, Chen X, Liu F, Yuan D, Pan H, Wang Q, Fang S, Chen T. Oral Delivery of Puerarin Nanocrystals To Improve Brain Accumulation and Anti-Parkinsonian Efficacy. Mol Pharm 2019; 16:1444-1455. [PMID: 30811206 DOI: 10.1021/acs.molpharmaceut.8b01012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Puerarin (PU) has emerged as a promising herb-derived anti-Parkinsonism compound. However, the undesirable water solubility as well as the unwanted bioavailability of PU limit its application. Therefore, this study aimed to develop and characterize PU nanocrystals (PU-NCs) with enhanced oral bioavailability and improved brain accumulation for the treatment of Parkinson's disease (PD). The fabricated PU-NCs were approximately spherical, with a mean size of 83.05 ± 1.96 nm, a PDI of 0.047 ± 0.009, a drug loading of 72.7%, and a rapid dissolution rate in vitro. Molecular dynamics simulation of PU and Pluronic F68 demonstrated the interaction energy and binding energy of -88.1 kJ/mol and -40.201 ± 0.685 kJ/mol, respectively, indicating a spontaneous binding with van der Waals interactions. In addition, the cellular uptake and permeability of PU-NCs were significantly enhanced as compared to PU alone ( p < 0.01). Moreover, PU-NCs exerted a significant neuroprotective effect against the cellular damage induced by the 1-methyl-4-phenylpyridinium ion (MPP+). Besides, PU-NCs demonstrated no obvious toxic effects on zebrafish, as evidenced by the unaltered morphology, hatching, survival rate, body length, and heart rate. Fluorescence resonance energy transfer (FRET) imaging revealed that intact nanocrystals were found in the intestine and brain of adult zebrafish gavaged with DiO/DiI/PU-NCs. Increased values of Cmax and AUC0- t were observed in the plasma of rats following oral administration of PU-NCs compared to PU suspension. Likewise, brain accumulation of PU-NCs was higher than that of PU suspension. Furthermore, PU-NCs attenuated dopamine depletion, ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral deficits, and enhanced the levels of dopamine and its metabolites. Taken altogether, this study provides evidence that PU-NCs could be exploited as a potential oral delivery system to treat PD, by improving the poor bioavailability of PU and enhancing their delivery into the brain.
Collapse
Affiliation(s)
- Sha Xiong
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Wei Liu
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Dongli Li
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Macau , China
| | - Fang Liu
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 501405 , China
| | - Dongsheng Yuan
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Huafeng Pan
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Qi Wang
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Shuhuan Fang
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Tongkai Chen
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| |
Collapse
|
26
|
Qi Z, Wang C, Jiang J, Wu C. Novel C15 Triene Triazole, D-A Derivatives Anti-HepG2, and as HDAC2 Inhibitors: A Synergy Study. Int J Mol Sci 2018; 19:ijms19103184. [PMID: 30332739 PMCID: PMC6214004 DOI: 10.3390/ijms19103184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023] Open
Abstract
A series of novel C15 urushiol derivatives were designed by introducing a pechmann structure and F-, Cl-, and Br-nitro substituents with different electronic properties into its alkyl side chain, as well as a triazolyl functional group in its aromatic oxide. Their chemical structures were determined based on the analysis of the NMR (nuclear magnetic resonance) spectroscopic and mass spectrometric data. The results showed that compound 4 exhibited a strong inhibition of the HepG2 cell proliferation (half maximal inhibitory concentration (IC50): 2.833 μM to human hepatocellular carcinoma (HepG2), and 80.905 μM to human normal hepatocytes (LO2)). Furthermore, it had an excellent synergistic effect with levopimaric acid. The nitrogen atom of the triazole ring formed a hydrogen-bonding interaction with Gly103, Gly154, and Tyr308, which made compound 4 bind to histone deacetylase (HDAC)2 more tightly. One triazole ring and His33 formed a π–π stacking effect; the other, whose branches were deep into the pocket, further enhanced the interaction with HDAC2. Meanwhile, compound 4 involved a hydrophobic interaction with the residues Phe210 and Leu276. The hydrophobic interaction and π–π stacking provided powerful van der Waals forces for the compounds.
Collapse
Affiliation(s)
- Zhiwen Qi
- Institute of Chemical Industry of Forest Products, China Academy of Forestry, Nanjing 210042, China.
- Key and Open Laboratory on Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, China.
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, China Academy of Forestry, Nanjing 210042, China.
- Key and Open Laboratory on Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, China.
| | - Jianxin Jiang
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210000, China.
| |
Collapse
|
27
|
Synthesis and Evaluation of C15 Triene Urushiol Derivatives as Potential Anticancer Agents and HDAC2 Inhibitor. Molecules 2018; 23:molecules23051074. [PMID: 29751548 PMCID: PMC6102549 DOI: 10.3390/molecules23051074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 01/27/2023] Open
Abstract
A series of C15 triene urushiol derivatives were synthesized and evaluated for their anti-HepG2 aggregation in vitro. The results indicated that all compounds had an effective anti-HepG2 vitality. Compound 1 was a potent inhibitor of HepG2 with IC50 of 7.886 μM and 150 μM against LO2. Moreover, compound 1 increased the apoptosis of HepG2. Compound 1’s thiol sulfur formed hydrogen bonding interactions with Gly154 and Tyr308, respectively, and made it bound more closely to HDAC2. In addition, it also formed hydrophobic interactions with the residues His33, Pro106, Val107, Gly154, Phe155, and His183, and was provided with a strong van der Waals force by the hydrophobic action.
Collapse
|
28
|
Sixto-López Y, Bello M, Correa-Basurto J. Insights into structural features of HDAC1 and its selectivity inhibition elucidated by Molecular dynamic simulation and Molecular Docking. J Biomol Struct Dyn 2018; 37:584-610. [PMID: 29447615 DOI: 10.1080/07391102.2018.1441072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Histone deacetylases (HDACs) are a family of proteins whose main function is the removal of acetyl groups from lysine residues located on histone and non-histone substrates, which regulates gene transcription and other activities in cells. HDAC1 dysfunction has been implicated in cancer development and progression; thus, its inhibition has emerged as a new therapeutic strategy. Two additional metal binding sites (Site 1 and Site 2) in HDACs have been described that are primarily occupied by potassium ions, suggesting a possible structural role that affects HDAC activity. In this work, we explored the structural role of potassium ions in Site 1 and Site 2 and how they affect the interactions of compounds with high affinities for HDAC1 (AC1OCG0B, Chlamydocin, Dacinostat and Quisinostat) and SAHA (a pan-inhibitor) using molecular docking and molecular dynamics (MD) simulations in concert with a Molecular-Mechanics-Generalized-Born-Surface-Area (MMGBSA) approach. Four models were generated: one with a potassium ion (K+) in both sites (HDAC1k), a second with K+ only at site 1 (HDAC1ks1), a third with K+ only at site 2 (HDAC1ks2) and a fourth with no K+ (HDAC1wk). We found that the presence or absence of K+ not only impacted the structural flexibility of HDAC1, but also its molecular recognition, consistent with experimental findings. These results could therefore be useful for further structure-based drug design studies addressing new HDAC1 inhibitors.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- a Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - Martiniano Bello
- a Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| |
Collapse
|
29
|
Wang Y, Yang L, Hou J, Zou Q, Gao Q, Yao W, Yao Q, Zhang J. Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking. J Biomol Struct Dyn 2018; 37:649-670. [PMID: 29380672 DOI: 10.1080/07391102.2018.1434833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dual-target inhibitors tend to improve the response rate in treating tumors, comparing with the single-target inhibitors. Matrix metalloproteinase-2 (MMP-2) and histone deacetylase-6 (HDAC-6) are attractive targets for cancer therapy. In this study, the hierarchical virtual screening of dual MMP-2/HDAC-6 inhibitors from natural products is investigated. The pharmacophore model of MMP-2 inhibitors is built based on ligands, but the pharmacophore model of HDAC-6 inhibitors is built based on the experimental crystal structures of multiple receptor-ligand complexes. The reliability of these two pharmacophore models is validated subsequently. The hierarchical virtual screening, combining these two different pharmacophore models of MMP-2 and HDAC-6 inhibitors with molecular docking, is carried out to identify the dual MMP-2/HDAC-6 inhibitors from a database of natural products. The four potential dual MMP-2/HDAC-6 inhibitors of natural products, STOCK1 N-46177, STOCK1 N-52245, STOCK1 N-55477, and STOCK1 N-69706, are found. The studies of binding modes show that the screened four natural products can simultaneously well bind with the MMP-2 and HDAC-6 active sites by different kinds of interactions, to inhibit the MMP-2 and HDAC-6 activities. In addition, the ADMET properties of screened four natural products are assessed. These found dual MMP-2/HDAC-6 inhibitors of natural products could serve as the lead compounds for designing the new dual MMP-2/HDAC-6 inhibitors having higher biological activities by carrying out structural modifications and optimizations in the future studies.
Collapse
Affiliation(s)
- Yijun Wang
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Limei Yang
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Jiaying Hou
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Qing Zou
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Qi Gao
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Wenhui Yao
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Qizheng Yao
- c School of Pharmacy , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| | - Ji Zhang
- a Department of Physical Chemistry , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China.,b State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , People's Republic of China
| |
Collapse
|