1
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
2
|
Mitrasinovic PM. On the recognition of Yersinia protein tyrosine phosphatase by carboxylic acid derivatives. J Biomol Struct Dyn 2023; 41:1879-1894. [PMID: 35021965 DOI: 10.1080/07391102.2021.2025148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Some members of Yersinia (Y), a genus of bacteria in the family Yersiniaceae, are pathogenic in humans, causing a range of health problems, from gastrointestinal syndromes to the plague. The Y protein tyrosine phosphatase (PTP) YopH is a crucial virulence determinant, considering the vital roles of PTPs in the intracellular signal transduction pathways and cell cycle control. The structural understanding of YopH as a cellular target in pathogenic conditions caused by Y infection is a prerequisite for designing potent and selective YopH inhibitors. Thus, by using molecular docking simulations, the open and closed conformations of the so-called 'WPD loop' (352-Gly-Asn-Trp-Pro-Asp-Gln-Thr-Ala-Val-Ser-361), located nearby the active site (403-Cys-Arg-Ala-Gly-Val-Gly-Arg-Thr-410) in YopH structure, are shown to be relevant for recognition by carboxylic acid derivatives, and the closed conformation is a more preferable receptor in terms of the quantitative correlation with experimental data. In both cases, aurintricarboxylic acid (ATA) has the greatest affinity to YopH. Consequently, a quantum mechanics/molecular mechanics (QM/MM) molecular model is derived to see into the extent of the ATA-induced open-closed conformational change. Active site residues and the WPD loop, as well as ATA are treated using SCC-DFTB-D (QM level), while the rest of the complex is treated using AMBER force field (MM level). The active/inactive functional behavior of YopH is explored by observing the interaction mode of ATA with the wild-type (wt)/Cys403Ser receptor and evaluating the competitive inhibition parameters. Implications of the present study for experimental research are discussed. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Petar M Mitrasinovic
- Center for Biophysical and Chemical Research, Belgrade Institute of Science and Technology, Belgrade, Serbia
| |
Collapse
|
3
|
Hong Y, Xu WQ, Feng J, Lou H, Liu H, Wang L, Cui H, Jiang LT, Xu RC, Xu HH, Xie MZ, Li Y, Kopylov P, Wang Q, Zhang Y. Nitidine chloride induces cardiac hypertrophy in mice by targeting autophagy-related 4B cysteine peptidase. Acta Pharmacol Sin 2023; 44:561-572. [PMID: 35986213 PMCID: PMC9388977 DOI: 10.1038/s41401-022-00968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Nitidine chloride (NC) is a standard active component from the traditional Chinese medicine Zanthoxylum nitidum (Roxb.) DC. (ZN). NC has shown a variety of pharmacological activities including anti-tumor activity. As a number of anti-tumor drugs cause cardiotoxicity, herein we investigated whether NC exerted a cardiotoxic effect and the underlying mechanism. Aqueous extract of ZN (ZNE) was intraperitoneally injected into rats, while NC was injected into beagles and mice once daily for 4 weeks. Cardiac function was assessed using echocardiography. We showed that both ZNE administered in rats and NC administered in mice induced dose-dependent cardiac hypertrophy and dysfunction, whereas administration of NC at the middle and high dose caused death in Beagles. Consistently, we observed a reduction of cardiac autophagy levels in NC-treated mice and neonatal mouse cardiomyocytes. Furthermore, we demonstrated that autophagy-related 4B cysteine peptidase (ATG4B) may be a potential target of NC, since overexpression of ATG4B reversed the cardiac hypertrophy and reduced autophagy levels observed in NC-treated mice. We conclude that NC induces cardiac hypertrophy via ATG4B-mediated downregulation of autophagy in mice. Thus, this study provides guidance for the safe clinical application of ZN and the use of NC as an anti-tumor drug.
Collapse
Affiliation(s)
- Yang Hong
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Wan-qing Xu
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Jing Feng
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Han Lou
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Heng Liu
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Lei Wang
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Hao Cui
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Lin-tong Jiang
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Ran-chen Xu
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Heng-hui Xu
- grid.410736.70000 0001 2204 9268Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Min-zhen Xie
- grid.410736.70000 0001 2204 9268Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Yang Li
- grid.410736.70000 0001 2204 9268Department of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, 150081 China
| | - Philipp Kopylov
- grid.448878.f0000 0001 2288 8774Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, 101-135 Russian Federation
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China. .,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, 150081, China. .,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, China.
| |
Collapse
|
4
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
5
|
Carvalho J, Santos T, Carrilho R, Sousa F, Salgado GF, Queiroz JA, Cruz C. Ligand screening to pre-miRNA 149 G-quadruplex investigated by molecular dynamics. J Biomol Struct Dyn 2019; 38:2276-2286. [DOI: 10.1080/07391102.2019.1632743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Josué Carvalho
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Tiago Santos
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Rui Carrilho
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Gilmar F. Salgado
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, IECB, Université de Bordeaux, Pessac, France
| | - João António Queiroz
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigacão em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
6
|
Bansal A, Kukreti S. The four repeat Giardia lamblia telomere forms tetramolecular G-quadruplex with antiparallel topology. J Biomol Struct Dyn 2019; 38:1975-1983. [DOI: 10.1080/07391102.2019.1623074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aparna Bansal
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi (North Campus), Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
7
|
Wang Z, Li J, Liu JP. Effects of cation charges on the binding of stabilizers with human telomere and TERRA G-quadruplexes. J Biomol Struct Dyn 2018; 37:1908-1921. [DOI: 10.1080/07391102.2018.1471416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University , Hangzhou, Zhejiang 311121, China
| | - Jianfeng Li
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University , Hangzhou, Zhejiang 311121, China
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University , Hangzhou, Zhejiang 311121, China
- Department of Immunology, Central Eastern Clinical School, Monash University , Melbourne, Vitoria 3004, Australia
- Hudson Institute of Medical Research , Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Science, Monash University , Clayton, Victoria 3168, Australia
| |
Collapse
|
8
|
Saha U, Yasmeen Khan A, Bhuiya S, Das S, Fiorillo G, Lombardi P, Suresh Kumar G. Targeting human telomeric DNA quadruplex with novel berberrubine derivatives: insights from spectroscopic and docking studies. J Biomol Struct Dyn 2018; 37:1375-1389. [DOI: 10.1080/07391102.2018.1459319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Urmila Saha
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Asma Yasmeen Khan
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sutanwi Bhuiya
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Suman Das
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Gaetano Fiorillo
- Naxospharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese, MI, Italy
| | - Paolo Lombardi
- Naxospharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese, MI, Italy
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|