1
|
Hu ZY, Wu M, Wang WJ, Jiang SL, Shi JH. Exploring the binding behaviors between nisoldipine and bovine serum albumin as a model protein by the aid of multi-spectroscopic approaches and in silico. J Biomol Struct Dyn 2024; 42:6108-6118. [PMID: 37403263 DOI: 10.1080/07391102.2023.2232027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
Bovine serum albumin (BSA), a model protein was used to evaluate the binding behavior of nisoldipine and human serum albumin by a series of experiments and in silico in this article. The outcomes suggested that nisoldipine and BSA formed the nisoldipine-BSA complex with a molar ratio of 1:1, caused the fluorescence quenching of BSA, which quenching mechanism was attributable to static quenching. The binding constant of the nisoldipine-BSA complex was (1.3-3.0) × 104 M-1 at 298-310 K, indicating that nisoldipine on BSA protein had a moderate affinity. During the complexation of nisoldipine with BSA, nisoldipine can spontaneously insert into the site II (subdomain III A) of BSA and the distance of energy transfer from donor group in protein to acceptor group in nisoldipine was 3.21 nm, which led to the change in the hydrophobicity of the microenvironment surrounding Trp residues and in the secondary structure of BSA. Additionally, the findings also confirmed that the hydrogen bond and van der Waals force were responsible for forming the nisoldipine-BSA complex and the complexation process was a spontaneous exothermic process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhe-Ying Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Meng Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Wan-Jun Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Shao-Liang Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Beşer BM, Yildirim B. Exploring Biological Interactions: A New Pyrazoline as a Versatile Fluorescent Probe for Energy Transfer and Cell Staining Applications. ChemistryOpen 2023; 12:e202300092. [PMID: 37667461 PMCID: PMC10477408 DOI: 10.1002/open.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
Fluorescent dyes are used in biological systems, because they are highly sensitive and selective. In this work, we investigated the fluorescent probe properties of 2-(5-(pyridin-2-yl)-1H-pyrazol-3-yl) phenol (PYDP) in two media [sodium dodecyl sulfate (SDS) and human serum albumin (HSA)]. Energy transfer parameters, photophysical and thermodynamic parameters of probe were determined. We investigated cytotoxicity of PYDP against colorectal adenocarcinoma cell lines (HT-29), breast cancer cell lines (MCF-7) and 3T3-L1 adipocytes (3T3 L1) cells. The cell staining property of PYDP was monitored using a confocal microscope. The results showed that PYDP binds to HSA, bindings are due to electrostatic/ionic interactions, and the binding process is spontaneous. PYDP was found to exhibit negligible cytotoxicity at high concentrations, and confocal microscope images showed that PYDP stained the cytoplasm of MCF-7 cells.
Collapse
Affiliation(s)
- Burcu Meryem Beşer
- Faculty of Arts and SciencesDepartment of ChemistryErzincan Binali Yıldırım UniversityErzincanTürkiye
| | - Berat Yildirim
- Faculty of Arts and SciencesDepartment of ChemistryErzincan Binali Yıldırım UniversityErzincanTürkiye
| |
Collapse
|
3
|
Paul S, Mondal S, Dey N. Improved Analytical Performance of an Amphiphilic Probe upon Protein Encapsulation: Spectroscopic Investigation along with Computational Rationalization. ACS APPLIED BIO MATERIALS 2023; 6:1495-1503. [PMID: 36940402 DOI: 10.1021/acsabm.2c01046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
An easily synthesizable pyrene-based amphiphilic probe (Pybpa) has been developed, which exhibited no responses with metal ions in the pure aqueous medium despite possessing a metal ion-chelating bispicolyl unit. We believe that spontaneous aggregation of Pybpa in aqueous medium makes the ion binding unit not accessible to the metal ions. However, the sensitivity and selectivity of Pybpa toward Zn2+ ions drastically improve in the presence of serum albumin protein, HSA. The differences in the microenvironment inside the protein cavity, in terms of local polarity, and conformational rigidity might be attributing factors for that. The mechanistic investigations also suggest that there might be the involvement of polar amino acid residues that take part in coordination with Zn2+ ions. Pybpa shows no detectable spectroscopic changes with Zn2+ ions in aqueous medium in the absence of HSA. However, it can effectively recognize Zn2+ ions in the protein-bound form. Moreover, the photophysical behavior of Pybpa and its zinc complex have been investigated with DFT and docking studies. Noteworthy, such an unusual sensing aspect of Zn2+ exclusively in the protein-bound state and particularly in aqueous medium is truly rare and innovative.
Collapse
Affiliation(s)
- Suvendu Paul
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078 Telangana, India
| | - Sourav Mondal
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078 Telangana, India
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078 Telangana, India
| |
Collapse
|
4
|
Probing the binding interactions between perfluoroalkyl carboxylic acids and adenosine A2A receptors by spectroscopic techniques, molecular simulations and quantum chemistry. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Yildirim B, Beşer BM, Çolak NU, Altay A, Yaşar A. Fluorescence interactions of a novel chalcone derivative with membrane model systems and human serum albumin. Biophys Chem 2022; 290:106879. [DOI: 10.1016/j.bpc.2022.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
|
6
|
Dezhampanah H, Moghaddam Pour AM. Multi technique investigation on interaction between 5-(2-thiazolylazo)-2,4,6-triaminopyrimidine and HSA and BSA. J Biomol Struct Dyn 2022; 40:8143-8154. [PMID: 33797349 DOI: 10.1080/07391102.2021.1906751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In research laboratories and in various industries, azo compounds are among the most effective and commonly used organic dyes. The association between human (HSA) and bovine (BSA) serum albumins with 5-(2-thiazolylazo)-2,4,6-triaminopyrimidine (TTP) was investigated in this research using spectroscopy methods and molecular modeling study. The fluorescence quenching results showed that the quenching mechanisms were static and dynamic processes for HSA and BSA, respectively. From the thermodynamic observations, it is clear that the binding process is a spontaneous molecular interaction, in which van der Waals and hydrogen bonding interactions for HSA and hydrophobic interaction for BSA play the major roles. According to Förster energy transfer, non-radiative energy transferred from HSA and BSA to TTP, is provided by close distance (r0) between TTP and Trp residues of HSA and BSA. The synchronous fluorescence spectroscopy, FT-IR findings and UV-Vis absorption data confirm that TTP can induce conformational and micro environmental changes in both the proteins. Furthermore, docking results predicted the probable binding site of TTP in subdomain IIA of HSA and BSA molecules where Trp residues are located. Types of amino acid residues surrounding the TTP molecule supported that van der Waals forces, hydrophobic forces and electrostatic forces play important roles in stabilization of drug-protein complexes formed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Dezhampanah
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
7
|
Udayan S, Kuriakose AC, Mary P, Sherin DR, Manojkumar TK, Nampoori V, Thomas S. Experimental and theoretical investigation on the nonlinear optical properties of LDS 821 dye in different solvents and DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121011. [PMID: 35158136 DOI: 10.1016/j.saa.2022.121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Linear and nonlinear optical properties of near-infrared laser grade dye LDS 821 in different solvents and Salmon Deoxyribonucleic acid (DNA) were studied using spectroscopic and Z-scan techniques. UV-Vis absorption spectrum of the dye shows a bathochromic shift with a decrease in the solvent polarity parameter, and in DNA, the dye exhibits a hypochromic shift. The fluorescence spectrum of the dye does not show any notable correlation with the solvent polarity parameter, but in DNA, the fluorescence intensity of the dye decreases with the incremental addition of DNA. Molecular docking studies reveal that the dye intercalates on the major grooves of DNA. Nonlinear optical properties of the dye in different solvents and phosphate buffer solution with varying DNA concentrations were studied using the Z-scan technique using a Q-switched Nd: YAG laser operating at fundamental and second harmonics. A closed and open aperture Z-scan of dye in different solvents was carried out to estimate the nonlinear refractive index, excited-state absorption cross-section, and two-photon absorption coefficient (TPA). The variation in nonlinear optical properties of the dye in different solvents was due to solvent-induced structural modifications. Theoretical investigation on nonlinear optical properties of the dye in different solvents was carried out using density function theory. The theoretical first and second-order hyperpolarizability was calculated using B3LYP functional. The predicated nonlinear optical parameters of the dye in different solvents does not show any direct correlation with solvent polarity. Nonlinear absorption of the dye in phosphate buffer solution (PBS) and DNA were estimated. The nonlinear absorption of the dye in PBS decreases with the addition of DNA. Molecular docking studies were carried out to determine the structural changes induced in dye due to the intercalation with DNA.
Collapse
Affiliation(s)
- Sony Udayan
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India.
| | - Alina C Kuriakose
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Priya Mary
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India
| | - D R Sherin
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management- Thiruvananthapuram, Kerala, India
| | - T K Manojkumar
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management- Thiruvananthapuram, Kerala, India
| | - Vpn Nampoori
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Sheenu Thomas
- International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala, India
| |
Collapse
|
8
|
Tao Y, Chen R, Fan Y, Liu G, Wang M, Wang S, Li L. Interaction mechanism of pelargonidin against tyrosinase by multi-spectroscopy and molecular docking. J Mol Recognit 2022; 35:e2955. [PMID: 35076992 DOI: 10.1002/jmr.2955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
The interaction mechanism of pelargonidin (PG) with tyrosinase was investigated by multi-spectroscopy and molecular docking. As a result, PG had strong inhibitory activity on tyrosinase with the IC50 value of 41.94×10-6 mol·L-1 . The inhibition type of PG against tyrosinase was determined as a mixed mode. Meanwhile, the fluorescence of tyrosinase was quenched statically by PG, and accompanied by non-radiative energy transfer. The three-dimensional (3-D) fluorescence, ultraviolet-visible spectroscopy (UV-Vis) and circular dichroism spectroscopies (CD) indicated that PG decreased the hydrophobicity of the micro-environment around tryptophan (Trp) and tyrosine (Tyr), which resulted in the conformational change of tyrosinase. In addition, fluorescence and molecular docking analysis indicated that PG bound to tyrosinase via hydrogen bonds (H-bonds) and van der Waals force (vdW force). We herein recommended that PG might be a potential candidate drug for the treatment of melanin-related diseases.
Collapse
Affiliation(s)
- Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
9
|
Fan Y, Tao Y, Liu G, Wang M, Wang S, Li L. Interaction study of engeletin toward cytochrome P450 3A4 and 2D6 by multi-spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120311. [PMID: 34481255 DOI: 10.1016/j.saa.2021.120311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The inhibitory effects of engeletin on the activities of human cytochrome P450 3A4 and 2D6 (CYP3A4 and CYP2D6) were investigated by enzyme kinetics, multi-spectroscopy and molecular docking. Engeletin was found to strongly inhibit CYP3A4 and CYP2D6, with the IC50 of 1.32 μM and 2.87 μM, respectively. The inhibition modes of engeletin against CYP3A4 and CYP2D6 were a competitive type and a mixed type, respectively. The fluorescence of the two CYPs was quenched statically by engeletin, which was bound to CYP3A4 stronger than to CYP2D6 at the same temperature. Circular dichroism spectroscopy, three-dimensional fluorescence, ultraviolet-visible spectroscopy and synchronous fluorescence confirmed that the conformation and micro-environment of the two CYPs protein were changed after binding with engeletin. Molecular docking, ultraviolet-visible spectroscopy and the fluorescence data revealed that engeletin had strong binding affinity to the two CYPs through hydrogen and van der Waals forces. The findings here suggested that engeletin may cause the herb-drug interactions for its inhibition of CYP3A4 and CYP2D6 activities.
Collapse
Affiliation(s)
- Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032,China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun 130032,China.
| |
Collapse
|
10
|
Alves JEF, Lucena MLC, de Souza Lucena AE, das Merces AAD, de Azevedo RDS, Sousa GLS, de Moura RO, Alves de Lima MDC, de Carvalho Júnior LB, de Almeida SMV. A simple method for obtaining human albumin and its use for in vitro interaction assays with indole-thiazole and indole-thiazolidinone derivatives. Int J Biol Macromol 2021; 192:126-137. [PMID: 34562539 DOI: 10.1016/j.ijbiomac.2021.09.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
This work aimed to develop a simple and low-cost method to obtain human serum albumin (HSA) and its consequent application for in vitro drug interaction assays. The HSA was purified by classic principles of plasma precipitation and thermocoagulation, using a multiple-stage fractionation. The quality of the final product was assessed by electrophoresis, protein dosage by the Lowry method and the pharmacopeial thermal stability. At the end, an isotonic solution of HSA with a total protein concentration of 2.7 mg·mL-1 was obtained, which was visualized as a single band corresponding to the molecular weight of 66 kDa. After the thermal stability test, there was no indication of turbidity or color change of the solution. Finally, the HSA was useful for interaction assays with indole-thiazole and indole-thiazolidinone derivatives through UV-vis absorption and fluorescence spectroscopic studies, as well as by docking molecular analysis. Derivatives quenched the intrinsic fluorescence of HSA, disrupted the tryptophan residues microenvironment, and probably bind at Sudlow's site I. Therefore, the simplified methodology developed in this work proved to be effective in obtaining HSA that can be applied to research goals including drug interaction assays.
Collapse
Affiliation(s)
| | | | | | | | - Rafael David Souto de Azevedo
- Laboratório de Biologia Molecular, Universidade de Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil
| | - Gleyton Leonel Silva Sousa
- Programa de Doutorado em Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil
| | - Ricardo Olimpio de Moura
- Departamento de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, João Pessoa, PB 58429-500, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | | | - Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil; Laboratório de Biologia Molecular, Universidade de Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil.
| |
Collapse
|
11
|
Ribeiro AG, Alves JEF, Soares JCS, dos Santos KL, Jacob ÍTT, da Silva Ferreira CJ, dos Santos JC, de Azevedo RDS, de Almeida SMV, de Lima MDCA. Albumin roles in developing anticancer compounds. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02748-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Huang M, Yong L, Xu J, Zuo Y, Yi Z, Liu H. Determinants of Adenosine A
2A
Receptors‐Perfluoroalkyl Sulfonates Complex: Multi‐Spectroscopic and Molecular Dynamics Simulation Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manting Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Li Yong
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Jie Xu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Yanqiu Zuo
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Zhongsheng Yi
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Hongyan Liu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| |
Collapse
|
13
|
Kooravand M, Asadpour S, Haddadi H, Farhadian S. An insight into the interaction between malachite green oxalate with human serum albumin: Molecular dynamic simulation and spectroscopic approaches. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124878. [PMID: 33360194 DOI: 10.1016/j.jhazmat.2020.124878] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Cationic triarylmethane dyes such as malachite green are aromatic xenobiotic compounds causing environmental pollution. The affinity between hazardous materials and biomolecules makes it important to understand the properties of such compounds. Accordingly, in this study, the possible molecular interaction between this pollutant and the human serum albumin (HSA) was investigated using a combination of molecular docking, molecular dynamic simulation and multi-spectroscopic approaches. The docking results illustrated that malachite green oxalate (MGO) could bind to some of the HSA amino acids with the estimated free energy = -32.93 kJ/mol. Further, the results of the dynamic simulation revealed that MGO had a steady interaction with the protein though increasing flexibility and decreasing the HSA compactness. These results were, therefore, in agreement with those obtained by spectroscopic techniques. The MGO concentration of 0.0005 mM could quench the HSA's intrinsic fluorescence by %16.88. The protein structural changes also revealed that the binding interaction of MGO-HSA was accompanied by an increase in the α-helix and a decrease in the β-sheet of the protein. Overall, this study indicated the suitable molecular modeling interaction of MGO and HSA.
Collapse
Affiliation(s)
- Masoumeh Kooravand
- Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran
| | - Saeid Asadpour
- Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran.
| | - Hedayat Haddadi
- Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Sciences, Shahrekord University, P. O. Box.115, Shahrekord, Iran
| |
Collapse
|
14
|
Li X, Sun X, Zhao R, Shao D, Bi S. Study on the binding of sulfaclozine sodium monohydrate with bovine and human serum albumins using multi-spectroscopy and molecular docking. J Biomol Struct Dyn 2020; 39:4835-4844. [PMID: 32579083 DOI: 10.1080/07391102.2020.1780945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The interactions of sulfaclozine sodium monohydrate (SSM) with bovine and human serum albumins (BSA and HSA) were studied by multi-spectroscopy and molecular docking technique. Stern-Volmer analysis and fluorescence lifetime measurements suggested the quenching processes were static. According to the Fluorescence resonance energy transfer (FRET) theory, the binding distances were obtained indicating SSM interacted with BSA/HSA along with non-radiation energy conversion. Electrostatic attraction was the main force in keeping the stability of the compound based on thermodynamic parameters. Circular dichroism (CD), synchronous fluorescence and Fourier Transform infrared (FT-IR) spectra embodied the secondary structures of serum albumins were transformed by SSM. The site marker competitive and molecular docking measurements testified SSM bound to BSA/HSA at site I. In conclusion, the secondary structures of BSA/HSA were changed by SSM in the static fluorescence quenching processes with the non-radiation energy conversion. The binding sites were all located at site I and electrostatic attraction was the main force for the new compound. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xu Li
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Xiaoyue Sun
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Rui Zhao
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Shao
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
15
|
Wang X, Hui H, Yu A, Jiang Z, Yu H, Zou L, Teng Y. Characterization of binding interaction of triclosan and trypsin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13409-13416. [PMID: 32026370 DOI: 10.1007/s11356-020-07858-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS), a broad-spectrum antibacterial agent, exhibits a high exposure in the environment. However, the residual TCS in the environment poses a potential risk to human health. In this study, spectroscopic methods, molecular docking and animal experiment were conducted to completely understand the interaction between trypsin and TCS. The formation of the TCS-trypsin complex was spontaneously achieved through hydrogen bonds and Van der Waals forces with a binding constant (Ka) between 103 and 104 L mol-1. In addition, the trypsin activity in fish intestine was inhibited by TCS exposure, revealing the potentially negative effects of TCS on metabolism. The results might be explained by changes in the conformation of the trypsin, inducing the content of unordered coil increasing significantly (from 36.2% to over 80%). This work provides useful information for assessing the toxicity of TCS at the molecular level.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Hongjie Hui
- Key Laboratory of Industrial Biotechnology, School of Bioengineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - An Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Ziyang Jiang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Hongyan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Luyi Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China
| | - Yue Teng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 1800# Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
16
|
Wang X, Zou L, Mi C, Yu H, Dong M, Teng Y. Characterization of binding interaction of triclosan and bovine serum albumin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:318-325. [PMID: 31762378 DOI: 10.1080/10934529.2019.1694346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is widely used in personal care products and acts as an antibacterial agent. Residues of TCS may have potential effects on the human health. In this article, the interaction between TCS and bovine serum albumin (BSA) has been characterized by using multi-spectroscopic approaches and molecular docking method under physiological conditions. Thermodynamic investigations revealed that TCS spontaneously bound to a binding site of BSA and hydrogen bonds played a dominant role in this process. The site marker competition experiments indicated that TCS bound at site II (subdomain IIIA) of BSA, which was well substantiated by molecular docking. The binding of TCS further led to changes of conformation and microenvironment of BSA. This work explored the interaction of TCS with BSA, which might be beneficial for evaluating the binding mechanism of other environmental pollutant at molecular level.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, PR China
| | - Luyi Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, PR China
| | - Chenyu Mi
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, PR China
| | - Hongyan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, PR China
| | - Mengxue Dong
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, PR China
| | - Yue Teng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, PR China
| |
Collapse
|
17
|
Wang BL, Zhou KL, Lou YY, Pan DQ, Kou SB, Lin ZY, Shi JH. Assessment on the binding affinity between ritonavir with model transport protein: a combined multi-spectroscopic approaches with computer simulation. J Biomol Struct Dyn 2019; 38:744-755. [DOI: 10.1080/07391102.2019.1587515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bao-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dong-Qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Song-Bo Kou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yi Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
18
|
Sun X, Bi S, Wu J, Zhao R, Shao D, Song Z. Multispectral and molecular docking investigations on the interaction of primethamine/trimethoprim with BSA/HSA. J Biomol Struct Dyn 2019; 38:934-942. [PMID: 30843766 DOI: 10.1080/07391102.2019.1588785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Primethamine (PMA) and trimethoprim (TMP) were investigated as traditional coccidiostats on the binding of bovine serum albumin (BSA) and human serum albumin (HSA) by multispectral and molecular docking techniques. The Stern-Volmer plots and time-resolved fluorescence measurement declared that PMA/TMP quenching the intrinsic fluorescence of BSA/HSA was static quenching process. The binding constants (Ka) and binding sites (n) were calculated at different temperatures. Meanwhile, thermodynamic parameters showed electrostatic forces played a leading role in the interaction of PMA/TMP with BSA/HSA. Some metal ions such as K+, Mg2+, Cu2+, Ca2+, Zn2+ and Fe3+ had no effects on the binding system. The UV-vis absorption spectra confirmed that the interaction between PMA/TMP and BSA/HSA did happen. The analyses of synchronous fluorescence, FT-IR and circular dichroism spectra illustrated that PMA/TMP changed the secondary structures of BSA/HSA. According to Förster non-radiative energy transfer theory, the binding distance between PMA/TMP and BSA/HSA was calculated. The binding location of PMA/TMP to BSA/HSA was identified as sub-domain IIA, which was further confirmed by molecular docking.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaoyue Sun
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Jun Wu
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Rui Zhao
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Shao
- College of Chemistry, Changchun Normal University, Changchun, China
| | - Zhe Song
- College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
19
|
Wu J, Bi SY, Sun XY, Zhao R, Wang JH, Zhou HF. Study on the interaction of fisetholz with BSA/HSA by multi-spectroscopic, cyclic voltammetric, and molecular docking technique. J Biomol Struct Dyn 2018; 37:3496-3505. [DOI: 10.1080/07391102.2018.1518789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jun Wu
- College of Chemistry, Changchun Normal University, Changchun, P.R. China
| | - Shu-Yun Bi
- College of Chemistry, Changchun Normal University, Changchun, P.R. China
| | - Xiao-Yue Sun
- College of Chemistry, Changchun Normal University, Changchun, P.R. China
| | - Rui Zhao
- College of Chemistry, Changchun Normal University, Changchun, P.R. China
| | - Ji-Hong Wang
- College of Chemistry, Changchun Normal University, Changchun, P.R. China
| | - Hui-Feng Zhou
- College of Chemistry, Changchun Normal University, Changchun, P.R. China
| |
Collapse
|