1
|
Rocca R, Grillone K, Citriniti EL, Gualtieri G, Artese A, Tagliaferri P, Tassone P, Alcaro S. Targeting non-coding RNAs: Perspectives and challenges of in-silico approaches. Eur J Med Chem 2023; 261:115850. [PMID: 37839343 DOI: 10.1016/j.ejmech.2023.115850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
The growing information currently available on the central role of non-coding RNAs (ncRNAs) including microRNAs (miRNAS) and long non-coding RNAs (lncRNAs) for chronic and degenerative human diseases makes them attractive therapeutic targets. RNAs carry out different functional roles in human biology and are deeply deregulated in several diseases. So far, different attempts to therapeutically target the 3D RNA structures with small molecules have been reported. In this scenario, the development of computational tools suitable for describing RNA structures and their potential interactions with small molecules is gaining more and more interest. Here, we describe the most suitable strategies to study ncRNAs through computational tools. We focus on methods capable of predicting 2D and 3D ncRNA structures. Furthermore, we describe computational tools to identify, design and optimize small molecule ncRNA binders. This review aims to outline the state of the art and perspectives of computational methods for ncRNAs over the past decade.
Collapse
Affiliation(s)
- Roberta Rocca
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | - Anna Artese
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy.
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Science, Magna Graecia University, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
2
|
Wang Y, Li G, Meng T, Qi L, Yan H, Wang Z. Molecular insights into the selective binding mechanism targeting parallel human telomeric G-quadruplex. J Mol Graph Model 2021; 110:108058. [PMID: 34736054 DOI: 10.1016/j.jmgm.2021.108058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
Stabilizing human telomere DNA G-quadruplex (G4) proves a promising anti-cancer strategy. Though plenty of G4 stabilizing molecules have been reported, little is known about their selective binding mechanism among various G4s. Recently, a designed monohydrazone derivative (compound 15) was reported to display specific preference in binding and stabilizing parallel human telomeric G4. To reveal the selective binding mechanism, a comparative theoretical investigation was performed on two monohydrazone derivatives (compounds 1 and 15) and three telomeric G4s showing parallel, hybrid-I, and hybrid-II conformations. Two probable binding modes, i.e. the end-stacking binding and the groove binding, were predicted by molecular dockings for each monohydrazone in its binding with the telomeric G4s. Further long-timescale molecular dynamics simulations reveal the conversion from the groove binding to the end-stacking binding for both compounds, indicating the preference of the end-stacking binding mode. Structural analysis together with binding free energy calculations show that the van der Waals interaction plays a leading role in ranking the binding affinity. By forming extensive van der Waals interactions, the parallel G4-15 binding complex shows the highest binding affinity, and the corresponding compound 15 exhibits the strongest stabilizing effect to the telomeric G4. These findings agree well with the experimental observations. Through characterizing the selective binding between monohydrazones and telomeric G4s at the atomic level, the current study provides support to the design of novel selective stabilizers targeting telomeric G4s.
Collapse
Affiliation(s)
- Yue Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong Province, 252059, China
| | - Guo Li
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, Hainan Province, 571199, China
| | - Tong Meng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong Province, 252059, China
| | - Lin Qi
- Railway Police College, Zhengzhou, Henan Province, 450053, China
| | - Hui Yan
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong Province, 252059, China.
| | - Zhiguo Wang
- Institute of Ageing Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, China.
| |
Collapse
|
3
|
Zheng C, Wang Z, Wang Q, Wang S, Lao S, He J, Chen Z. Efficient preparation of the chiral intermediate of luliconazole with Lactobacillus kefir alcohol dehydrogenase through rational rearrangement of the substrate binding pocket. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Wang Z, Li G, Tian Z, Lou X, Huang Y, Wang L, Li J, Hou T, Liu JP. Insight Derived from Molecular Dynamics Simulation into the Selectivity Mechanism Targeting c-MYC G-Quadruplex. J Phys Chem B 2020; 124:9773-9784. [DOI: 10.1021/acs.jpcb.0c05029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Guo Li
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, Hainan, China
| | - Zhou Tian
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xiaoqin Lou
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yining Huang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Lihui Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jianfeng Li
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Department of Immunology, Monash University Faculty of Medicine, Melbourne, Victoria 3004, Australia
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
5
|
Li JF, Zhang JX, Li G, Xu YY, Lu K, Wang ZG, Liu JP. Antimicrobial activity and mechanism of peptide CM4 against Pseudomonas aeruginosa. Food Funct 2020; 11:7245-7254. [PMID: 32766662 DOI: 10.1039/d0fo01031f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi and tumor cells and may possibly be used as an antimicrobial agent. In this study, a C-terminal amidated antibacterial peptide ABP-CM4 (ABP-CM4N) with the strongest antibacterial activity was obtained through screening the antibacterial activities of ABP-CM4 with different modifications. The minimal inhibitory concentration of ABP-CM4N was 8 μM against P. aeruginosa (ATCC 27853) which was lower than that of ABP-CM4 (16 μM). The strengthened antimicrobial activity of ABP-CM4N may be associated with the increased membrane binding capacity, being two times that of ABP-CM4 (p < 0.001). The antibacterial mechanism of ABP-CM4N to Pseudomonas aeruginosa was examined by means of cell membrane integrity analysiss, the intracellular ultrastructure change observation and E. coli genomic DNA binding assay. It was found that ABP-CM4N had the same antimicrobial mechanism as ABP-CM4, and the aim of the antimicrobial mechanism was mainly to destroy the cell membrane which caused nucleic acid or protein leakage, and secondly to interact with E. coli genomic DNA after penetrating the cell membrane. Furthermore, in vitro ABP-CM4N showed a better bacteriostatic activity in meats, with the treated samples showing two to three times less positive colonies than ABP-CM4.
Collapse
Affiliation(s)
- Jian-Feng Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China.
| | - Jia-Xin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Guo Li
- Department of Biochemistry and Molecular Biology and Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical College, Haikou, 571199, China
| | - Yan-Yan Xu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China.
| | - Kai Lu
- School of Medicine, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, China
| | - Zhi-Guo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China.
| | - Jun-Ping Liu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China.
| |
Collapse
|
6
|
Wang Z, Li J, Liu J, Wang L, Lu Y, Liu JP. Molecular insight into the selective binding between human telomere G-quadruplex and a negatively charged stabilizer. Clin Exp Pharmacol Physiol 2020; 47:892-902. [PMID: 31894867 DOI: 10.1111/1440-1681.13249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
The single-strand human telomere overhang forms intramolecular high-order structures named G-quadruplex (G4) under physiological conditions. Telomere G4 stabilization prevents telomere lengthening by telomerase in cancer cells representing a promising strategy in cancer therapy. Using molecular docking and molecular dynamics (MD) simulations, specific binding of the anionic phthalocyanine 3,4',4'',4'''-tetrasulfonic acid (APC) to the human hybrid (3 + 1) G4s was investigated at the atomic level. We found that APC preferred the end-stacking binding with the telomere hybrid type II (hybrid-II) G4 as compared to the groove binding with the hybrid type I (hybrid-I) G4 remarkable stabilizing effect and more favourable binding free energies. Analysis of non-covalent interaction and decomposition of the binding free energy revealed that van der Waals interaction played a leading role in the binding of APC and telomere hybrid G4s. These findings provide evidence for the first time to shed light on the designs of selective telomere G4 stabilizers.
Collapse
Affiliation(s)
- Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jianfeng Li
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jun Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lihui Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yanhua Lu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China.,Department of Immunology, Central Eastern Clinical School, Monash University, Melbourne, Australia.,Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Australia
| |
Collapse
|
7
|
Wang Z, Chen Z, Li J, Huang J, Zheng C, Liu JP. Combined 3D-QSAR, molecular docking and molecular dynamics study on the benzimidazole inhibitors targeting HCV NS5B polymerase. J Biomol Struct Dyn 2019; 38:1071-1082. [PMID: 30915896 DOI: 10.1080/07391102.2019.1593244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hepatitis C virus (HCV)-infected population has continued to grow during recent years, and novel HCV antiviral agents are urgently needed. In this work, a combined theoretical study was performed on the HCV non-structural 5B (NS5B) polymerase and 53 benzimidazole inhibitors. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were carried out with ligand-based and receptor-based alignments. Ligand-based QSAR models (cross-validated q2 of 0.918 for CoMFA and 0.825 for CoMSIA) were found to be superior to receptor-based approaches (cross-validated q2 of 0.765 for CoMFA and 0.740 for CoMSIA). Based on the most predictive CoMFA and CoMSIA models, the structural features that were essential for the inhibitory activity of benzimidazoles were characterized. A molecular dynamics study revealed that the induced fit effect between NS5B and its substrate may be responsible for the inferiority of the receptor-based CoMFA and CoMSIA models. The binding-free energy calculated using the MM/PBSA method correlated well with the experimental results and revealed that the van der Waals and electrostatic interactions most contributed to the binding. In addition, energetically favorable NS5B residues were identified by the per-residue decomposition of binding-free energy. The results presented in this work provide meaningful information for the design of novel benzimidazole inhibitors targeting the NS5B polymerase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhenming Chen
- Laboratory of Biocatalysis, College of Life & Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianfeng Li
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jing Huang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chenni Zheng
- Laboratory of Biocatalysis, College of Life & Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of Immunology, Central Eastern Clinical School, Monash University, Melbourne, Vitoria, Australia.,Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|