1
|
Wang R, Sang P, Guo Y, Jin P, Cheng Y, Yu H, Xie Y, Yao W, Qian H. Cadmium in food: Source, distribution and removal. Food Chem 2023; 405:134666. [DOI: 10.1016/j.foodchem.2022.134666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 12/07/2022]
|
2
|
Zhuang H, Fan X, Ji D, Wang Y, Fan J, Li M, Ni D, Lu S, Li X, Chai Z. Elucidation of the conformational dynamics and assembly of Argonaute-RNA complexes by distinct yet coordinated actions of the supplementary microRNA. Comput Struct Biotechnol J 2022; 20:1352-1365. [PMID: 35356544 PMCID: PMC8933676 DOI: 10.1016/j.csbj.2022.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Argonaute (AGO) proteins, the core of RNA-induced silencing complex, are guided by microRNAs (miRNAs) to recognize target RNA for repression. The miRNA-target RNA recognition forms initially through pairing at the seed region while the additional supplementary pairing can enhance target recognition and compensate for seed mismatch. The extension of miRNA lengths can strengthen the target affinity when pairing both in the seed and supplementary regions. However, the mechanism underlying the effect of the supplementary pairing on the conformational dynamics and the assembly of AGO-RNA complex remains poorly understood. To address this, we performed large-scale molecular dynamics simulations of AGO-RNA complexes with different pairing patterns and miRNA lengths. The results reveal that the additional supplementary pairing can not only strengthen the interaction between miRNA and target RNA, but also induce the increased plasticity of the PAZ domain and enhance the domain connectivity among the PAZ, PIWI, N domains of the AGO protein. The strong community network between these domains tightens the mouth of the supplementary chamber of AGO protein, which prevents the escape of target RNA from the complex and shields it from solvent water attack. Importantly, the inner stronger matching pairs between the miRNA and target RNA can compensate for weaker mismatches at the edge of supplementary region. These findings provide guidance for the design of miRNA mimics and anti-miRNAs for both clinical and experimental use and open the way for further engineering of AGO proteins as a new tool in the field of gene regulation.
Collapse
Affiliation(s)
- Haiming Zhuang
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xiaohua Fan
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Dong Ji
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yuanhao Wang
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Duan Ni
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shaoyong Lu
- Department of Pathophysiology, Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200438, China
- Department of Hepatic Surgery, Shanghai Geriatric Center, Shanghai 201104, China
| |
Collapse
|
3
|
Heo L, Sugita Y, Feig M. Protein assembly and crowding simulations. Curr Opin Struct Biol 2022; 73:102340. [PMID: 35219215 PMCID: PMC8957576 DOI: 10.1016/j.sbi.2022.102340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Proteins encounter frequent molecular interactions in biological environments. Computer simulations have become an increasingly important tool in providing mechanistic insights into how such interactions in vivo relate to their biological function. The review here focuses on simulations describing protein assembly and molecular crowding effects as two important aspects that are distinguished mainly by how specific and long-lived protein contacts are. On the topic of crowding, recent simulations have provided new insights into how crowding affects protein folding and stability, modulates enzyme activity, and affects diffusive properties. Recent studies of assembly processes focus on assembly pathways, especially for virus capsids, amyloid aggregation pathways, and the role of multivalent interactions leading to phase separation. Also, discussed are technical challenges in achieving increasingly realistic simulations of interactions in cellular environments.
Collapse
Affiliation(s)
- Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. https://twitter.com/huhlim
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Computational Biophysics Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|