1
|
Cacita N, Batista Silva A, Portela dos Santos NA, Barbosa Ramos LC, Freire de Moraes Del Lama MP, Zumstein Georgetto Naal RM, Nikolaou S. Interactions with HSA, anticancer and antiallergic activity of binuclear μ‐oxo bridged ruthenium acetate compounds. ChemistrySelect 2023. [DOI: 10.1002/slct.202300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Natacha Cacita
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABiQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| | - Amanda Batista Silva
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABiQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| | - Nicolle Azevedo Portela dos Santos
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABiQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| | - Loyanne Carla Barbosa Ramos
- Departamento de Ciências Biomoleculares Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| | - Maria Perpétua Freire de Moraes Del Lama
- Laboratório de Biossensores e Sistemas Nanoestruturados Departamento de Ciências Biomoleculares Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica 13083-970 Campinas Brazil
| | - Rose Mary Zumstein Georgetto Naal
- Laboratório de Biossensores e Sistemas Nanoestruturados Departamento de Ciências Biomoleculares Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica 13083-970 Campinas Brazil
| | - Sofia Nikolaou
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABiQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| |
Collapse
|
2
|
Hosseini Hashemi Z, Mirzaei M, Eslami Moghadam M. Property evaluation of two anticancer candidate platinum complexes with N-isobutyl glycine ligand against human colon cancer. Biometals 2022; 35:987-1009. [PMID: 35829930 DOI: 10.1007/s10534-022-00418-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Small molecules have potential usage in cancer therapy due to their remarkable potency of disarranging the natural structure of nucleic acids. In this study, two complexes [Pt(NH3)2(IBgly)]NO3 (1) and [Pt(bipy)(IBgly)]NO3 (2) based on Pt(II), N-isobutylglycine (IBgly), 2,2'-bipyridine, and ammonia were prepared and characterized by spectroscopic methods. Pharmacokinetic ADME data, absorption, distribution, metabolism, excretion, and bioavailability radar showed two complexes can be introduced for Pt-based anti-cancer drugs. Mechanism of tumor inhibition and DNA interaction of these compounds was studied by UV-Vis, fluorescence, and CD spectroscopies. Also, thermodynamic parameters and the binding constants were calculated through absorption measurements. The fluorescence data showed that a static quenching mechanism occurred for both complexes with a binding constant and binding affinity towards DNA (Kb ≈ 3500 M-1 and kq ≈ 2.1 × 1011 M-1 s-1). The thermodynamic parameters indicated electrostatic approaching and groove binding were more feasible than intercalation mode between Pt(II) complexes and DNA. CD spectra indicated the increasing intensity of the positive band and the negative band decreasing. Density functional theory calculations confirmed the experimental data and determined the quantum chemical descriptors including total energy, hardness, chemical potential, electrophilicity, electronegativity, etc. According to this, the binding tendency of these compounds with DNA could be predicted. Further, molecular docking studies were also performed. Docking studies revealed that the desolvation, hydrogen, and electrostatic binding were effective for the interaction between complexes and DNA with binding energy (- 10.44 and - 9.57 kcal/mol) for complexes 1 and 2, respectively, which is mainly of partially electrostatic and groove binding type. The cytotoxic activity of Pt complexes was examined against human colon cancer cell line which indicated good activity with IC50 values of (41.66 and 47.30 μM) for both complexes after 72 h, respectively. Also, they demonstrated more inhibitory effects compared to carboplatin.
Collapse
Affiliation(s)
- Zahra Hosseini Hashemi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | |
Collapse
|
3
|
Ghalandari B, Asadollahi K, Ghorbani F, Ghalehbaghi S, Rafiee S, Komeili A, Kamrava SK. Determinants of gold nanoparticle interactions with Proteins: Off-Target effect study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120736. [PMID: 34923375 DOI: 10.1016/j.saa.2021.120736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Photothermal therapy is one of the promising approaches toward cancer treatment. To date, several compounds have been developed for this application, among which nanoparticles are attracting ever-increasing attention. One of the obstacles in developing efficient photothermal nanoparticle agents is their off-target effect which is mainly mediated via non-specific interactions with proteins. Such interaction not only reduces the bioavailability of the agent but also will cause protein aggregation that can be lethal. So, gaining knowledge on the mechanisms mediating such interactions will facilitate development of more effective agents. Our last studies showed the mechanism of action of two modified gold nanoparticles, folic acid functionalized gold nanoparticles (FA-AuNPs) and gold shelled Fe3O4 nanoparticles (AuFeNPs), as photothermal agents. In the current work, we focus on the interaction of these two NPs with human serum albumin (HSA) and human hemoglobin (Hb) as model proteins. The complex formation between NPs and proteins was investigated by fluorescence spectroscopy, dynamic light scattering and circular dichroism. Our data distinguishes the very distinct mode of interaction of charged and neutral NPs with proteins. While the interaction of neutral AuFeNP to proteins is protein dependent, charged nanoparticles FA-AuNP interact indistinguishably with all proteins via electrostatic interactions. Moreover, complexes obtained from FA-AuNPs with proteins are more stable than that of AuFeNP. However, the secondary structure content of proteins in the presence of NPs indicates the insignificant effect of NPs on the secondary structure of these proteins. Our data propose that the charge functionalization of the NPs is an effective way for modulating the interaction of nanoparticles with proteins.
Collapse
Affiliation(s)
- Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kazem Asadollahi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Suzan Ghalehbaghi
- Medical Engineering Department, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saharnaz Rafiee
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ali Komeili
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Kamran Kamrava
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Sarmento CO, Pinheiro BFA, Abrahão J, Chaves OA, Moreira MB, Nikolaou S. Interactions of a Ruthenium‐Ketoprofen Compound with Human Serum Albumin and DNA: Insights from Spectrophotometric Titrations and Molecular Docking Calculations. ChemistrySelect 2022. [DOI: 10.1002/slct.202104020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Caroline O. Sarmento
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABIQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| | - Bruno F. A. Pinheiro
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABIQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| | - Josielle Abrahão
- Departamento de Bioquímica Universidade Estadual de Maringá-UEM 87020-900 Maringá PR Brasil
| | - Otávio A. Chaves
- Departamento de Química Centro de Química de Coimbra Universidade de Coimbra Rua Larga s/n 3004-535 Coimbra Portugal
| | - Mariete B. Moreira
- Departamento de Química Universidade Estadual de Londrina-UEL 86051-990 Londrina PR Brasil
| | - Sofia Nikolaou
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABIQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| |
Collapse
|
5
|
Vaezi M. Evaluation of quercetin omega-6 and -9 esters on activity and structure of mushroom tyrosinase: Spectroscopic and molecular docking studies. J Food Biochem 2021; 45:e13953. [PMID: 34585423 DOI: 10.1111/jfbc.13953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022]
Abstract
Quercetin is one of the most ubiquitous dietary flavonoids widely distributed in plants and foods of plant origin, and is a potent tyrosinase inhibitor. Quercetin fatty esters could lead to an improve in quercetin lipophilicity which could positively affect its pharmacological activity. In this study, the inhibitory effect of two novel esters of quercetin-linoleic acid (ligand A) and quercetin-oleic acid (ligand B) has been investigated on structure and diphenolase activity of mushroom tyrosinase (MT) by experimental and molecular docking techniques. The inhibitory kinetics study using UV-visible spectrophotometry in the presence of its substrate 3,4-dihydroxyphenylalanine (L-dopa), revealed that both esters successfully inhibit the activity of tyrosinase and reduce the formation of dopaquinone. Results showed that the binding of ligands to MT induced rearrangement and conformational changes of the enzyme. Thermodynamic parameters of these interactions (Ka , ∆G°, ∆H° and ∆S°) were obtained at pH = 6.8 and temperatures of 298 and 310 K. Molecular docking studies further was applied to calculation of binding energies (ΔGbA = -21.84 kJ/mol, ΔGbB = -20.92 kJ/mol), inhibition constant values (KIA = 160 µM, KIB = 220 µM) and the special binding site. It can be deduced that ligands act as a potential tyrosinase inhibitor and it was found that the best possible interaction condition with binding modes visualize was achieved by ligand A and exhibited the potent tyrosinase inhibitory activity. These findings may be helpful to understand the inhibition mechanism of quercetin fatty acids esters on tyrosinase and provide a convenient screening method to differentiate phenolic tyrosinase inhibitors. PRACTICAL APPLICATIONS: Bioavailability and antioxidant activity of conjugated fatty acids with their bioequivalence in several biological effects and metabolic processes such as beta-oxidation from various forms has been reported to be highly variable and useful. Quercetin shows beneficial role in human health, but its biological effects in vivo is limited by poor bioavailability, low skin permeability and solubility. This study design new tyrosinase inhibitors which helpful to functional research of unsaturated fatty acid esters in the treatment of inflammatory diseases and hyperpigmentation disorders. In addition, undesirable enzymatic browning of plant derived-foods by tyrosinase causes a decrease in market value and economic loss of food products. The results suggest that the conjugation of quercetin with linoleic and oleic acids resulted in novel stronger tyrosinase inhibitors which may have therapeutic applications and replacement of toxic tyrosinase inhibitors and contribute as anti- browning agents in food, cosmetic and pharmaceutical industry.
Collapse
Affiliation(s)
- Morteza Vaezi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
6
|
Gholami H, Divsalar A, Abbasalipourkabir R, Ziamajidi N, Saeidifar M. The simultaneous carrier ability of natural antioxidant of astaxanthin and chemotherapeutic drug of 5-fluorouracil by whey protein of β-lactoglobulin: spectroscopic and molecular docking study. J Biomol Struct Dyn 2020; 39:1004-1016. [DOI: 10.1080/07391102.2020.1733091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hamid Gholami
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Nasrin Ziamajidi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Saeidifar
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
7
|
Dubey S, Kallubai M, Subramanyam R. Comparative binding of Swertiamarin with human serum albumin and α-1 glycoprotein and its cytotoxicity against neuroblastoma cells. J Biomol Struct Dyn 2019; 38:5266-5276. [PMID: 31755370 DOI: 10.1080/07391102.2019.1695672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shreya Dubey
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana, India
| | - Monika Kallubai
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana, India
| |
Collapse
|
8
|
Shahabadi N, Hadidi S, Shiri F. New water-soluble Fe3O4@SiO2 magnetic nanoparticles functionalized with levetiracetam drug for adsorption of essential biomolecules by case studies of DNA and HSA. J Biomol Struct Dyn 2019; 38:283-294. [DOI: 10.1080/07391102.2019.1569557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Hadidi
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Shiri
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|