1
|
Ballabh D, Shaikh S, More RA, Meshram RJ. Dynamics, mechanistic and energetic evaluation of thiazole-thiadiazole compounds in flavin dependent thymidylate synthase of Mycobacterium tuberculosis. Int J Biol Macromol 2024; 289:138839. [PMID: 39706436 DOI: 10.1016/j.ijbiomac.2024.138839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge due to the emergence of drug-resistant strains. This study targets Flavin-dependent thymidylate synthase (ThyX), an essential enzyme in the thymidylate biosynthesis pathway crucial for bacterial DNA replication. We utilized advanced computational techniques, including molecular dynamics (MD) simulations and interaction energy analysis, to examine the binding interactions and stability of various thiazole-thiadiazole compounds with Mtb ThyX. Our results, corroborated by experimental validation, demonstrate that ligand binding enhances ThyX protein stability, with compound 5l exhibiting the strongest stabilizing effect. Root mean square fluctuation (RMSF) data indicate a consistent binding mechanism, while radius of gyration (RG) and solvent accessible surface area (SASA) analyses confirm structural stability. Key interactions with conserved residues such as Glu74, Ser105, Tyr44, and Ser100 were highlighted through hydrogen bonding and cluster analysis, underscoring protein-ligand complex stability. Principal component analysis (PCA) suggests an allosteric regulation mechanism within ThyX, driven by ligand binding, which induces conformational changes. Free energy landscape (FEL) analysis shows rapid stabilization in ligand-bound states. Compound 5l stands out due to its favourable pharmacokinetic properties and safety, making it a promising candidate for anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Debopriya Ballabh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS (Maharashtra), India
| | - Samin Shaikh
- Kr. V. N. Naik Shikshan Prasarak Sanstha's Arts, Commerce and Science College, Canada Corner, Nashik 422002, India
| | - Rahul A More
- Department of Microbiology, Dayanand Science College, Latur 413 512, MS, India
| | - Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS (Maharashtra), India.
| |
Collapse
|
2
|
Meshram R, Kolte B, Gacche R. Reverse vaccinology approach for identification of epitopes from E1 protein as peptide vaccine against HCV: A proof of concept. Vaccine 2024; 42:126106. [PMID: 38971664 DOI: 10.1016/j.vaccine.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/09/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The development of effective vaccines against Hepatitis C Virus (HCV) remains a global health priority and challenge. In this study, we employed an integrative approach combining computational epitope prediction with experimental validation to identify immunogenic peptides targeting the E1 glycoprotein of HCV. In the present report, computational data from various epitope prediction algorithms such as IEDB and SYFPEITHI, followed by molecular dynamics (MD) simulations and immuno-informatics analysis is presented. Through computational screening, we identified potential epitope candidates, with QVRNSSGLY (P3) and QLFTFSPRH (P7) emerging as promising candidates. MD simulations revealed stable interactions between these epitopes and MHC molecule, further validated by free energy estimations using MMPBSA method. Immuno-informatics analysis supported these findings, showing high binding potential and immunogenicity scores for the selected peptides. Subsequent synthesis and characterization of epitope peptides confirmed their structural integrity and purity required for conducting immune activation assays. Experimental immunological assays carried out in this study involved epitope peptide induced activation of CD8 + and CD4 + T cells from healthy human subjects and HCV- recovered patients. Data from experimental validation revealed significant cytokine release upon exposure to epitope peptides, particularly TNF-a, IL-6, and GM-CSF, indicative of robust immune responses. Notably, peptides P3 and P7 exhibited the most pronounced cytokine induction profiles, underscoring their potential as vaccine candidates. Further investigations addressing the mechanism of action of these epitope peptides under preclinical and clinical settings may help in developing effective vaccine against HCV.
Collapse
Affiliation(s)
- Rohan Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Baban Kolte
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Department of Microbial Genome Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig 38124, Germany; Institute of Microbiology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
3
|
Wang Y, Li C, Li Z, Moalin M, den Hartog GJM, Zhang M. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids-An Overview. Molecules 2024; 29:2627. [PMID: 38893503 PMCID: PMC11173571 DOI: 10.3390/molecules29112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Despite several decades of research, the beneficial effect of flavonoids on health is still enigmatic. Here, we focus on the antioxidant effect of flavonoids, which is elementary to their biological activity. A relatively new strategy for obtaining a more accurate understanding of this effect is to leverage computational chemistry. This review systematically presents various computational chemistry indicators employed over the past five years to investigate the antioxidant activity of flavonoids. We categorize these strategies into five aspects: electronic structure analysis, thermodynamic analysis, kinetic analysis, interaction analysis, and bioavailability analysis. The principles, characteristics, and limitations of these methods are discussed, along with current trends.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China;
| | - Mohamed Moalin
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands;
| | - Gertjan J. M. den Hartog
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
4
|
A R Oliveira G, G D V Morales B, M O Sousa R, S Pereira S, Antunes D, Caffarena ER, Zanchi FB. Exploring Novel Antimalarial Compounds Targeting Plasmodium falciparum Enoyl-ACP Reductase: Computational and Experimental Insights. ACS OMEGA 2024; 9:22777-22793. [PMID: 38826533 PMCID: PMC11137734 DOI: 10.1021/acsomega.3c09893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 06/04/2024]
Abstract
Malaria, caused by Plasmodium protozoa with Plasmodium falciparum as the most virulent species, continues to pose significant health challenges. Despite the availability of effective antimalarial drugs, the emergence of resistance has heightened the urgency for developing novel therapeutic compounds. In this study, we investigated the enoyl-ACP reductase enzyme of P. falciparum (PfENR) as a promising target for antimalarial drug discovery. Through a comprehensive analysis, we conducted a comparative evaluation of two lead compounds, LD1 (CID: 44405336, lead compounds 1) and LD2 (CID: 72703246, lead compounds 2), obtained from the PubChem/NCBI ligand database, to serve as reference molecules in the identification of potential derivatives using virtual screening assays. Among the newly identified candidates, Ligand 1 (LG1) and Ligand 2 (LG2) exhibited intriguing characteristics and underwent further investigation through docking and molecular dynamics simulations. Ligand 1 (LG1) demonstrated interactions similar to LD1, including hydrogen bonding with Asp218, while Ligand 2 (LG2) displayed superior binding energy comparable to LD1 and LD2, despite lacking hydrogen bonding interactions observed in the control compounds triclosan and its derivative 7-(4-chloro-2-hydroxyphenoxy)-4-methyl-2H-chromen-2-one (CHJ). Following computational validation using the MM/GBSA method to estimate binding free energy, commercially acquired LG1 and LG2 ligands were subjected to in vitro testing. Inhibition assays were performed to evaluate their potential as PfENR inhibitors alongside triclosan as a control compound. LG1 exhibited no inhibitory effects, while LG2 demonstrated inhibitory effects like triclosan. In conclusion, this study contributes valuable insights into developing novel antimalarial drugs by identifying LG2 as a potential ligand and employing a comprehensive approach integrating computational and experimental methodologies.
Collapse
Affiliation(s)
- George A R Oliveira
- Laboratório
de Bioinformática e Química Medicinal, Fundação Oswaldo Cruz, CEP: 76812-245 Porto Velho-RO, Brazil
- Programa
de Pós-graduação Stricto sensu em Biologia Computacional
e Sistemas do Instituto Oswaldo Cruz, CEP: 21040-360 Rio de Janeiro-RJ, Brazil
| | - Bruno G D V Morales
- Laboratório
de Bioinformática e Química Medicinal, Fundação Oswaldo Cruz, CEP: 76812-245 Porto Velho-RO, Brazil
- Programa
de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia
(UNIR), CEP: 76801-974 Porto Velho-RO, Brazil
| | - Rosa M O Sousa
- Laboratório
de Engenharia de Anticorpos, Fundação
Oswaldo Cruz de Rondônia, CEP: 76812-245 Porto Velho-RO, Brazil
| | - Soraya S Pereira
- Programa
de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia
(UNIR), CEP: 76801-974 Porto Velho-RO, Brazil
- Laboratório
de Engenharia de Anticorpos, Fundação
Oswaldo Cruz de Rondônia, CEP: 76812-245 Porto Velho-RO, Brazil
- Programa
de Pós-graduação Stricto sensu em Biologia Computacional
e Sistemas do Instituto Oswaldo Cruz, CEP: 21040-360 Rio de Janeiro-RJ, Brazil
| | - Deborah Antunes
- Laboratório
de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo
Cruz (FIOCRUZ), CEP: 21040-900 Rio de Janeiro-RJ, Brazil
| | - Ernesto R. Caffarena
- Programa
de Pós-graduação Stricto sensu em Biologia Computacional
e Sistemas do Instituto Oswaldo Cruz, CEP: 21040-360 Rio de Janeiro-RJ, Brazil
- Programa
de Computação Científica—PROCC, Fundação
Oswaldo Cruz, CEP: 21040-900 Rio de Janeiro-RJ, Brazil
| | - Fernando B. Zanchi
- Laboratório
de Bioinformática e Química Medicinal, Fundação Oswaldo Cruz, CEP: 76812-245 Porto Velho-RO, Brazil
- Programa
de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia
(UNIR), CEP: 76801-974 Porto Velho-RO, Brazil
- Instituto
Nacional de Epidemiologia na Amazônia Ocidental—EPIAMO, CEP: 76812-245 Porto Velho-RO, Brazil
- Programa
de Pós-graduação Stricto sensu em Biologia Computacional
e Sistemas do Instituto Oswaldo Cruz, CEP: 21040-360 Rio de Janeiro-RJ, Brazil
| |
Collapse
|
5
|
Vaziri-Amjad S, Rahgosha R, Taherkhani A. Potential JAK2 Inhibitors from Selected Natural Compounds: A Promising Approach for Complementary Therapy in Cancer Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:1114928. [PMID: 38706884 PMCID: PMC11068457 DOI: 10.1155/2024/1114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 02/14/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
Background Janus-activated kinase 2 (JAK2) plays a pivotal role in numerous essential biological processes, including proliferation, apoptosis, and metastasis in human cells. Prior studies have indicated that inhibiting JAK2 could be a promising strategy to mitigate cell proliferation and induce apoptosis in tumor cells. Objectives This study aimed to estimate the binding affinity of 79 herbal compounds, comprising 46 flavonoids, 21 anthraquinones, and 12 cinnamic acids, to the ATP-binding cleft of JAK2 to identify potential herbal inhibitors of JAK2. Methods The binding affinities between ligands and JAK2 were calculated utilizing AutoDock 4.0 software in conjunction with the Cygwin environment. Cross-validation was conducted using the Schrödinger tool. Molecular dynamics simulations were employed to evaluate the stability of docked poses for the most significant JAK2 inhibitors. Furthermore, the Discovery Studio Visualizer tool was utilized to elucidate interactions between the top-ranked JAK2 inhibitors and residues within the JAK2 ATP-binding site. Results Twelve flavonoids, two anthraquinones, and three cinnamic acids demonstrated substantial binding affinities to the protein kinase domain of the receptor, with a criterion of ΔGbinding < -10 kcal/mol. Among the studied flavonoids, anthraquinones, and cinnamic acid derivatives, orientin, chlorogenic acid, and pulmatin emerged as the most potent JAK2 inhibitors, exhibiting ΔGbinding scores of -14.49, -11.87, and -10.76 kcal/mol, respectively. Furthermore, the docked poses of orientin, pulmatin, and chlorogenic acid remained stable throughout 60 ns computer simulations. The average root mean square deviation values calculated for JAK2 when complexed with orientin, chlorogenic acid, and pulmatin were 2.04 Å, 2.06 Å, and 1.95 Å, respectively. Conclusion This study underscores the robust inhibitory potential of orientin, pulmatin, and chlorogenic acid against JAK2. The findings hold promise for the development of novel and effective drugs for cancer treatment.
Collapse
Affiliation(s)
- Samaneh Vaziri-Amjad
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Rahgosha
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Nie C, Zou Y, Liao S, Gao Q, Li Q. Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing. Nutrients 2023; 15:nu15040883. [PMID: 36839242 PMCID: PMC9963849 DOI: 10.3390/nu15040883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Chinese yam (Dioscorea opposita) tuber has a significant effect of invigorating the intestine and improving the symptoms of long-term diarrhea according to the records of the Chinese Pharmacopoeia. Phenanthrene polyphenols from Chinese yam, with higher inhibition of cyclooxygenase-2 (COX-2) than anti-inflammatory drugs, are an important material basis in alleviating ulcerative colitis via nuclear factor kappa-B (NF-κB)/COX-2 pathway, based on our previous research. The present study further explored the target and molecular mechanisms of phenanthrenes' modulation of the NF-κB/COX-2 signaling pathway by means of molecular docking and gene silencing. Firstly, interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α) expression of 6-hydroxy-2,4,7-trimethoxyphenanthrene (PC2)/6,7-dihydroxy-2,4-dimethoxyphe-nanthrene (PC4) were compared on TNF-α induced human colon adenocarcinoma (Caco-2) cells. Secondly, molecular docking and dynamics simulation were implemented for PC2/PC4 and COX-2. Finally, COX-2 silencing was performed on TNF-α induced Caco-2 cells to confirm the target of PC4 on NF-κB/COX-2 pathway. Lower expression of IL-8 and TNF-α in PC4 treated Caco-2 cells indicated that PC4 had stronger anti-inflammatory activity than PC2. The binding of PC4 and COX-2 was stronger due to the hydrogen bond between hydroxyl group and Tyr385. No significant differences were found in phosphorylation nuclear factor kappa-B inhibitor alpha (pIkBα), phosphorylation NF-κB (pNF-κB) and phosphorylation extracellular signal-regulated kinase 1/2 (pERK1/2) expression between control and PC4 group after silencing, while these protein expressions significantly decreased in PC4 group without silencing, which confirmed that COX-2 was the important target for PC4 in alleviating ulcerative colitis. These findings indicate that PC4 was supposed to have inhibited NF-κB pathway mediated inflammation via suppression of positive feedback targeting COX-2.
Collapse
Affiliation(s)
- Congyi Nie
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Qunyu Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- Correspondence: ; Tel.: +86-13430362787
| |
Collapse
|
7
|
Taldaev A, Terekhov R, Nikitin I, Zhevlakova A, Selivanova I. Insights into the Pharmacological Effects of Flavonoids: The Systematic Review of Computer Modeling. Int J Mol Sci 2022; 23:6023. [PMID: 35682702 PMCID: PMC9181432 DOI: 10.3390/ijms23116023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Computer modeling is a method that is widely used in scientific investigations to predict the biological activity, toxicity, pharmacokinetics, and synthesis strategy of compounds based on the structure of the molecule. This work is a systematic review of articles performed in accordance with the recommendations of PRISMA and contains information on computer modeling of the interaction of classical flavonoids with different biological targets. The review of used computational approaches is presented. Furthermore, the affinities of flavonoids to different targets that are associated with the infection, cardiovascular, and oncological diseases are discussed. Additionally, the methodology of bias risks in molecular docking research based on principles of evidentiary medicine was suggested and discussed. Based on this data, the most active groups of flavonoids and lead compounds for different targets were determined. It was concluded that flavonoids are a promising object for drug development and further research of pharmacology by in vitro, ex vivo, and in vivo models is required.
Collapse
Affiliation(s)
- Amir Taldaev
- Laboratoty of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya Str. 10/8, 119121 Moscow, Russia
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Roman Terekhov
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Ilya Nikitin
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Anastasiya Zhevlakova
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| | - Irina Selivanova
- Department of Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (R.T.); (I.N.); (A.Z.); (I.S.)
| |
Collapse
|
8
|
More NA, Jadhao NL, Meshram RJ, Tambe P, Salve RA, Sabane JK, Sawant SN, Gajbhiye V, Gajbhiye JM. Novel 3-fluoro-4-morpholinoaniline derivatives: Synthesis and assessment of anti-cancer activity in breast cancer cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Patil A, Duggal H, Bagul KT, Kamble S, Lokhande P, Gacche R, Meshram R. Synthesis of New 3-Arylaminophthalides and 3-Indolyl-phthalides using Ammonium Chloride, Evaluation of their Anti-Mycobacterial Potential and Docking Study. Comb Chem High Throughput Screen 2021; 23:723-739. [PMID: 32321396 DOI: 10.2174/1386207323666200422082754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/03/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The study aims at the derivatization of "Phthalides" and synthesizes 3- arylaminophthalides & 3-indolyl-phthalides compounds, and evaluates their anti-tubercular and antioxidant activities. The study has also intended to employ the in silico methods for the identification of possible drug targets in Mycobacterium and evaluate the binding affinities of synthesized compounds. METHODS This report briefly explains the synthesis of phthalide derivatives using ammonium chloride. The synthesized compounds were characterized using spectral analysis. Resazurin Microtiter Assay (REMA) plate method was used to demonstrate the anti-mycobacterial activity of the synthesized compounds. An in-silico pharmacophore probing approach was used for target identification in Mycobacterium. The structural level interaction between the identified putative drug target and synthesized phthalides was studied using Lamarckian genetic algorithm-based software. RESULTS AND DISCUSSION In the present study, we report an effective, environmentally benign scheme for the synthesis of phthalide derivatives. Compounds 5c and 5d from the current series appear to possess good anti-mycobacterial activity. dCTP: deaminasedUTPase was identified as a putative drug target in Mycobacterium. The docking results clearly showed the interactive involvement of conserved residues of dCTP with the synthesized phthalide compounds. CONCLUSION On the eve of evolving anti-TB drug resistance, the data on anti-tubercular and allied activities of the compounds in the present study demonstrates the enormous significance of these newly synthesized derivatives as possible candidate leads in the development of novel anti-tubercular agents. The docking results from the current report provide a structural rationale for the promising anti-tubercular activity demonstrated by 3-arylaminophthalides and 3-indolyl-phthalides compounds.
Collapse
Affiliation(s)
- Avinash Patil
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Harleen Duggal
- Bioinformatics Centre, The Department of Biotechnology and Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Kamini T Bagul
- Bioinformatics Centre, The Department of Biotechnology and Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Sonali Kamble
- Gramin Science (Vocational) College, Vishnupuri, Nanded, India
| | - Pradeep Lokhande
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Rohan Meshram
- Bioinformatics Centre, The Department of Biotechnology and Department of Chemistry, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
10
|
Sawant AS, Kamble SS, Pisal PM, Sawant SS, Hese SV, Bagul KT, Pinjari RV, Kamble VT, Meshram RJ, Gacche RN. Synthesis and evaluation of N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogous as anticancer, anti-angiogenic & antioxidant agents: In vitro and in silico analysis. Comput Biol Chem 2021; 92:107484. [PMID: 33865034 DOI: 10.1016/j.compbiolchem.2021.107484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022]
Abstract
N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogues (flutamides) are versatile scaffolds with a wide spectrum of biological activities. A series of new N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides (8a-t) and their N-ethyl analogous (9a-t) were synthesized and characterized. The inhibitory potential of the synthesized compounds on the viability of three human cancer cell lines HEP3BPN 11 (liver), MDA-MB 453 (breast), and HL 60 (leukemia) were assessed. Among all the compounds 8 L, 8q, 9n and 9p showed higher inhibitory activity on the viability of HL 60 than the standard methotrexate. These lead molecules were then tested for their potential to inhibit the activity of proangiogenic cytokines. The compound 9n showed significantly better inhibition against two cytokines viz. TNFα and Leptin as compared to the standard suramin, while 9p has activity comparable to suramin against IGF1, VEGF, FGFb, and Leptin. The 8q is found to be strong antiangiogenic agent against IGF1, VEGF and TGFβ; while 8 L has showed activity against TNFα, VEGF, and Leptin inhibition. Furthermore antioxidant potential of 8a-t and 9a-t compounds was screened using DPPH, OH and SOR radical scavenging activities. The OH radical scavenging activity of 8c and DPPH activities of 9n as well as 9o are significant as compared to respective standards ascorbic acid and α-tocopherol. The 8c, 9p and 9 h have also exhibited potential antioxidant activity. Additionally, we present in silico molecular docking data to provide the structural rationale of observed TNFα inhibition against newly synthesized compounds. Overall, the synthesized flutamide derivatives have not only anticancer activity, but also possess dual inhibitory effect (anti-angiogenesis and antioxidant) and hence can act as a promising avenue to develop further anticancer agents.
Collapse
Affiliation(s)
- Ajay S Sawant
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Sonali S Kamble
- Gramin Science (Vocational) College, Vishnupuri, Nanded-431 606, MS, India
| | - Parshuram M Pisal
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Sanjay S Sawant
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Shrikant V Hese
- DD Bhoyar College of Arts and Science Mouda, Nagpur, 441104, MS, India
| | - Kamini T Bagul
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Rahul V Pinjari
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Vinod T Kamble
- Organic Chemistry Research Laboratory, Department of Chemistry, Institute of Science, Nagpur, MS, India.
| | - Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, MS, India.
| |
Collapse
|
11
|
Barage S, Karthic A, Bavi R, Desai N, Kumar R, Kumar V, Lee KW. Identification and characterization of novel RdRp and Nsp15 inhibitors for SARS-COV2 using computational approach. J Biomol Struct Dyn 2020; 40:2557-2574. [PMID: 33155531 PMCID: PMC7651200 DOI: 10.1080/07391102.2020.1841026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The World Health Organization has declared COVID-19 as a global health emergency. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and highlights an urgent need for therapeutics. Here, we have employed a series of computer-aided drug repurposing campaign to discover inhibitors of RNA dependent RNA polymerase (RdRp) and Nsp15/EndoU. Subsequently, MD simulation has been performed to observe dynamic behavior of identified leads at the active site of RdRp and Nsp15. We successfully identified novel lead molecule such as Alectinib for RdRp while Naldemedine and Ergotamine for NSP15. These lead molecules were accommodated in the active site of the enzyme and stabilized by the networks of the hydrogen bond, pi type and hydrophobic interaction with key residues of either target. Interestingly, identified compounds show molecular mimicry in terms of molecular interactions with key residues of RdRp and Nsp15 essential for catalysis and substrate interaction. Previously, Alectinib, Naldemedine and Ergotamine were used as drug in different diseases might be repurposed against selected protein targets of COVID19. Finally, we propose that the identified inhibitors represent a novel lead molecule to design a more effective inhibitor to stop the progress of pathogen. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - A Karthic
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - Rohit Bavi
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, China.,School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, Maharashtra, India
| | - Neetin Desai
- SDSOS, NMIMS University, Mumbai, Maharashtra, India
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Vikas Kumar
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC, Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
12
|
Meshram RJ, Bagul KT, Aouti SU, Shirsath AM, Duggal H, Gacche RN. Modeling and simulation study to identify threonine synthase as possible drug target in Leishmania major. Mol Divers 2020; 25:1679-1700. [PMID: 32737682 DOI: 10.1007/s11030-020-10129-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/22/2020] [Indexed: 01/16/2023]
Abstract
Leishmaniasis is one of the most neglected tropical diseases that demand immediate attention to the identification of new drug targets and effective drug candidates. The present study demonstrates the possibility of using threonine synthase (TS) as a putative drug target in leishmaniasis disease management. We report the construction of an effective homology model of the enzyme that appears to be structurally as well as functionally well conserved. The 200 nanosecond molecular dynamics data on TS with and without pyridoxal phosphate (PLP) shed light on mechanistic details of PLP-induced conformational changes. Moreover, we address some important structural and dynamic interactions in the PLP binding region of TS that are in good agreement with previously speculated crystallographic estimations. Additionally, after screening more than 44,000 compounds, we propose 10 putative inhibitor candidates for TS based on virtual screening data and refined Molecular Mechanics Generalized Born Surface Area calculations. We expect that structural and functional dynamics data disclosed in this study will help initiate experimental endeavors toward establishing TS as an effective antileishmanial drug target.
Collapse
Affiliation(s)
- Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Kamini T Bagul
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Snehal U Aouti
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Akshay M Shirsath
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Harleen Duggal
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| |
Collapse
|
13
|
Zhao L, Pan F, Li Y, Hao S, Mehmood A, Wang Y, Wang C. Structure characteristics of flavonoids for heterocyclic aromatic amines inhibition using quantitative structure-activity relationship modeling. J Food Biochem 2020; 44:e13390. [PMID: 32710583 DOI: 10.1111/jfbc.13390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/17/2023]
Abstract
The objective of this study was to investigate the structure characteristics of flavonoids that act as inhibitors for heterocyclic aromatic amines (HAAs) formation. Five quantitative structure-activity relationship models for predicting the inhibitory rates of HAAs (norharman, harman, PhIP, MeIQx, and 4,8-DiMeIQx) were established using selected chemometric parameters (R2 : 0.591-0.920), and indicated that the hydrophobicity, hydroxyl groups, and topological structure of flavonoids played important roles in the inhibition of HAAs formation. The 5,7-dihydroxyls in meta-position of the A-ring and the 4'-hydroxyl in the B-ring of flavonoids were critical for the inhibitory effects of HAAs, whereas the introduction of 3-hydroxyl and 3-O-glucoside in the C-ring reduced the inhibitory effects. Catechin served as the most effective inhibitor of HAAs followed by luteolin and genistein. The study can bring us a broader idea for controlling the formation of HAAs according to the structure of flavonoids. PRACTICAL APPLICATIONS: Heterocyclic aromatic amines (HAAs) are a class of organic substances with carcinogenic and mutagenic effect formed during the heating process of meat products. The formation of HAAs can be inhibited by adding natural antioxidants such as flavonoids to the meat during pretreatment. This inhibition is influenced by the unique structure of flavonoids. Thus, there has been an increasing demand to exploit the effective HAAs inhibitors from flavonoids by structure characteristics. Our study showed that the inhibitory effect of flavonoids on the formation of HAAs was mainly depended on their hydrophobicity, hydroxyl groups, and topological structure using the multiple QSAR models. Thus, effective HAAs inhibitors can be explored from dietary flavonoids according their structure characteristics.
Collapse
Affiliation(s)
- Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yubin Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
14
|
Sandhya J, Veeralakshmi S, Kalaiselvam S. Tripolyphosphate crosslinked Triticum aestivum (wheatgrass) functionalized antimicrobial chitosan: Ameliorating effect on physicochemical, mechanical, invitro cytocompatibility and cell migration properties. J Biomol Struct Dyn 2020; 39:1635-1644. [PMID: 32107986 DOI: 10.1080/07391102.2020.1736160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polymeric films for various biomedical applications require to be biocompatible and non- toxic. Chemical route of modifications for functionalization of the films for improved properties lead to undesirable effects for biological applications. Hence a natural way to enhancing their properties is by functionalizing them using plant extracts. This report investigates the synthesis of bioactive phytochemical loaded polymer using Triticum aestivum (wheatgrass) extract incorporated in tripolyphosphate crosslinked chitosan. Physical and mechanical properties of the extract functionalized crosslinked chitosan were analyzed and this showed significant changes in thickness, tensile strength and % elongation of the blend. The extract functionalized chitosan was characterized using Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM) and Energy dispersive spectroscopy (EDAX) confirming the interaction between the functional moieties of the extract and polymer. Antimicrobial analysis showed improved activity against Escherichia coli and Staphylococus aureus and Candida albicans. Presence of the extract in crosslinked chitosan enhanced the cytocompatibility in 3T3 cells carried out by MTT assay and showed improved cell migration properties determined by scratch assay.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- J Sandhya
- Department of Applied Science and Technology, Anna University, Chennai, India
| | - S Veeralakshmi
- Department of Applied Science and Technology, Anna University, Chennai, India
| | - S Kalaiselvam
- Department of Applied Science and Technology, Anna University, Chennai, India
| |
Collapse
|
15
|
Mármol I, Castellnou P, Alvarez R, Gimeno MC, Rodríguez-Yoldi MJ, Cerrada E. Alkynyl Gold(I) complexes derived from 3-hydroxyflavones as multi-targeted drugs against colon cancer. Eur J Med Chem 2019; 183:111661. [PMID: 31546196 DOI: 10.1016/j.ejmech.2019.111661] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 01/26/2023]
Abstract
The design of multi-targeted drugs has gained considerable interest in the last decade thanks to their advantages in the treatment of different diseases, including cancer. The simultaneous inhibition of selected targets from cancerous cells to induce their death represents an attractive objective for the medicinal chemist in order to enhance the efficiency of chemotherapy. In the present work, several alkynyl gold(I) phosphane complexes derived from 3-hydroxyflavones active against three human cancer cell lines, colorectal adenocarcinoma Caco-2/TC7, breast adenocarcinoma MCF-7 and hepatocellular carcinoma HepG2, have been synthesized and characterized. Moreover, these compounds display high selective index values towards differentiated Caco-2 cells, which are considered as a model of non-cancerous cells. The antiproliferative effect of the most active complexes [Au(L2b)PPh3] (3b) and [Au(L2c)PTA] (4c) on Caco-2 cells, seems to be mediated by the inhibition of the enzyme cyclooxygenase-1/2 and alteration of the activities of the redox enzymes thioredoxin reductase and glutathione reductase. Both complexes triggered cell death by apoptosis, alterations in cell cycle progression and increased of ROS production. These results provide support for the suggestion that multi-targeting approach involving the interaction with cyclooxygenase-1/2 and the redox enzymes that increases ROS production, enhances cell death in vitro. All these results indicate that complexes [Au(L2b)PPh3] and [Au(L2c)PTA] are promising antiproliferative agents for further anticancer drug development.
Collapse
Affiliation(s)
- Inés Mármol
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009, Zaragoza, Spain; Departamento de Farmacología y Fisiología, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013, Zaragoza, Spain
| | - Pilar Castellnou
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009, Zaragoza, Spain
| | - Raquel Alvarez
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009, Zaragoza, Spain
| | - M Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013, Zaragoza, Spain.
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009, Zaragoza, Spain.
| |
Collapse
|
16
|
An investigation on in vitro anti-inflammatory and antiproliferative potential of isolated Labdane diterpenoids from Andrographis paniculata (Burm. f.) wall. Ex nees: An important medicinal plant prescribed in Ayurveda. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.100983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kolte BS, Londhe SR, Bagul KT, Pawnikar SP, Goundge MB, Gacche RN, Meshram RJ. FlavoDb: a web-based chemical repository of flavonoid compounds. 3 Biotech 2019; 9:431. [PMID: 31696036 DOI: 10.1007/s13205-019-1962-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
There are many online resources that focus on chemical diversity of natural compounds, but only handful of resources exist that focus solely on flavonoid compounds and integrate structural and functional properties; however, extensive collated flavonoid literature is still unavailable to scientific community. Here we present an open access database 'FlavoDb' that is focused on providing physicochemical properties as well as topological descriptors that can be effectively implemented in deducing large scale quantitative structure property models of flavonoid compounds. In the current version of database, we present data on 1, 19,400 flavonoid compounds, thereby covering most of the known structural space of flavonoid class of compounds. Moreover, effective structure searching tool presented here is expected to provide an interactive and easy-to-use tool for obtaining flavonoid-based literature and allied information. Data from FlavoDb can be freely accessed via its intuitive graphical user interface made available at following web address: http://bioinfo.net.in/flavodb/home.html.
Collapse
|
18
|
Oguz M, Bhatti AA, Dogan B, Karakurt S, Durdagi S, Yilmaz M. Formation of the inclusion complex of water soluble fluorescent calix[4]arene and naringenin: solubility, cytotoxic effect and molecular modeling studies. J Biomol Struct Dyn 2019; 38:3801-3813. [PMID: 31526236 DOI: 10.1080/07391102.2019.1668301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Naringenin is considered as an important flavonoid in phytochemistry because of its important effect on cancer chemoprevention. Unfortunately its poor solubility has restricted its therapeutic applications. In this study, an efficient water-soluble fluorescent calix[4]arene (compound 5) was synthesized as host macromolecule to increase solubility and cytotoxicity in cancer cells of water-insoluble naringenin as well as to clarify localization of naringenin into the cells. Complex formed by host-guest interaction between compound 5 and naringenin was analyzed with UV-visible, fluorescence, FTIR spectroscopic techniques and molecular modeling studies. Stern-Volmer analysis showed binding constant value of Ksv 3.5 × 107 M-1 suggesting strong interaction between host and guest. Binding capacity shows 77% of naringenin was loaded on compound 5. Anticarcinogenic effects of naringenin complex were evaluated on human colorectal carcinoma cells (DLD-1) and it was found that 5-naringenin complex inhibits proliferation of DLD-1 cells 3.4-fold more compared to free naringenin. Fluorescence imaging studies show 5-naringenin complex was accumulated into the cytoplasm instead of the nucleus. Increased solubility and cytotoxicity of naringenin with fluorescent calix[4]arene makes it one of the potential candidates as a therapeutic enhancer. For deep understanding of host-guest interaction mechanisms, complementary multiscale molecular modeling studies were also carried out.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Oguz
- Department of Chemistry, Selcuk University, Konya, Turkey.,Department of Advanced Material and Nanotechnology, Selcuk University, Konya, Turkey
| | - Asif Ali Bhatti
- Department of Chemistry, Selcuk University, Konya, Turkey.,Department of Chemistry, Government College University Hyderabad, Hyderabad, Pakistan
| | - Berna Dogan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Karakurt
- Department of Biochemistry, Selcuk University, Konya, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, Konya, Turkey
| |
Collapse
|
19
|
Bi S, Wu J, Sun X, Zhao R, Shao D, Li X. Spectral and molecular docking studies on the interaction of three flavonoids with bovine serum albumin. J Biomol Struct Dyn 2019; 38:2197-2205. [DOI: 10.1080/07391102.2019.1624196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun, PR China
| | - Jun Wu
- College of Chemistry, Changchun Normal University, Changchun, PR China
| | - Xiaoyue Sun
- College of Chemistry, Changchun Normal University, Changchun, PR China
| | - Rui Zhao
- College of Chemistry, Changchun Normal University, Changchun, PR China
| | - Di Shao
- College of Chemistry, Changchun Normal University, Changchun, PR China
| | - Xu Li
- College of Chemistry, Changchun Normal University, Changchun, PR China
| |
Collapse
|