1
|
Dehury B, Mishra S, Panda S, Singh MK, Simha NL, Pati S. Structural Dynamics of Neutral Amino Acid Transporter SLC6A19 in Simple and Complex Lipid Bilayers. J Cell Biochem 2025; 126:e30693. [PMID: 39749651 PMCID: PMC11696832 DOI: 10.1002/jcb.30693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025]
Abstract
B0AT1 (SLC6A19) is a major sodium-coupled neutral amino acid transporter that relies on angiotensin converting enzyme 2 (ACE2) or collectrin for membrane trafficking. Despite its significant role in disorders associated with amino acid metabolism, there is a deficit of comprehensive structure-function understanding of B0AT1 in lipid environment. Herein, we have employed molecular dynamics (MD) simulations to explore the architectural characteristics of B0AT1 in two distinct environments: a simplified POPC bilayer and a complex lipid system replicating the native membrane composition. Notably, our B0AT1 analysis in terms of structural stability and regions of maximum flexibility shows consistency in both the systems with enhanced structural features in the case of complex lipid system. Our findings suggest that diacylglycerol phospholipids significantly alter the pore radius, hydrophobic index, and surface charge distribution of B0AT1, thereby affecting the flexibility of transmembrane helices TM7, TM12, and loop connecting TM7-TM8, crucial for ACE2-B0AT1 interaction. Pro41, Ser190, Arg214, Arg240, Ser413, Pro414, Cys463, and Val582 are among the most prominent lipid binding residues that might influence B0AT1 functionality. We also perceive notable lipid mediated deviation in the degree of tilt and loss of helicity in TM1 and TM6 which might affect the substrate binding sites S1 and S2 in B0AT1. Considerably, destabilization in the structure of B0AT1 in lipid environment was evident upon mutation in TM domain, associated with Hartnup disorder through various structure-based protein stability tools. Our two-tiered approach allowed us to validate the use of POPC as a baseline for initial analyses of SLC transporters. Altogether, our all-atoms MD study provides a platform for future investigations into the structure-function mechanism of B0AT1 in realistic lipid mimetic bilayers and offers a framework for developing new therapeutic agents targeting this transporter.
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalIndia
- Bioinformatics Division I Microbiology DivisionICMR‐Regional Medical Research CentreBhubaneswarOdishaIndia
| | - Sarbani Mishra
- Bioinformatics Division I Microbiology DivisionICMR‐Regional Medical Research CentreBhubaneswarOdishaIndia
| | - Sunita Panda
- Bioinformatics Division I Microbiology DivisionICMR‐Regional Medical Research CentreBhubaneswarOdishaIndia
| | | | - Nischal L. Simha
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationManipalIndia
| | - Sanghamitra Pati
- Bioinformatics Division I Microbiology DivisionICMR‐Regional Medical Research CentreBhubaneswarOdishaIndia
| |
Collapse
|
2
|
Rout M, Dey S, Mishra S, Panda S, Singh MK, Sinha R, Dehury B, Pati S. Machine learning and classical MD simulation to identify inhibitors against the P37 envelope protein of monkeypox virus. J Biomol Struct Dyn 2024; 42:3935-3948. [PMID: 37221882 DOI: 10.1080/07391102.2023.2216290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Monkeypox virus (MPXV) outbreak is a serious public health concern that requires international attention. P37 of MPXV plays a pivotal role in DNA replication and acts as one of the promising targets for antiviral drug design. In this study, we intent to screen potential analogs of existing FDA approved drugs of MPXV against P37 using state-of-the-art machine learning and computational biophysical techniques. AlphaFold2 guided all-atoms molecular dynamics simulations optimized P37 structure is used for molecular docking and binding free energy calculations. Similar to members of Phospholipase-D family , the predicted P37 structure also adopts a β-α-β-α-β sandwich fold, harbouring strongly conserved HxKxxxxD motif. The binding pocket comprises of Tyr48, Lys86, His115, Lys117, Ser130, Asn132, Trp280, Asn240, His325, Lys327 and Tyr346 forming strong hydrogen bonds and dense hydrophobic contacts with the screened analogs and is surrounded by positively charged patches. Loops connecting the two domains and C-terminal region exhibit high degree of flexibility. In some structural ensembles, the partial disorderness in the C-terminal region is presumed to be due to its low confidence score, acquired during structure prediction. Transition from loop to β-strands (244-254 aa) in P37-Cidofovir and its analog complexes advocates the need for further investigations. MD simulations support the accuracy of the molecular docking results, indicating the potential of analogs as potent binders of P37. Taken together, our results provide preferable understanding of molecular recognition and dynamics of ligand-bound states of P37, offering opportunities for development of new antivirals against MPXV. However, the need of in vitro and in vivo assays for confirmation of these results still persists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Suchanda Dey
- Biomics and Biodiversity Lab, Siksha 'O' Anusandhan (deemed to be) University, Bhubaneswar, Odisha, India
| | - Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Sunita Panda
- Mycology Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Rohan Sinha
- Computer Science, National Institute of Technology Patna, Patna, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
Karagöl A, Karagöl T, Smorodina E, Zhang S. Structural bioinformatics studies of glutamate transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, I->T, F->Y and Q->L, T->I and Y->F. PLoS One 2024; 19:e0289644. [PMID: 38598436 PMCID: PMC11006163 DOI: 10.1371/journal.pone.0289644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/22/2023] [Indexed: 04/12/2024] Open
Abstract
Glutamate transporters play key roles in nervous physiology by modulating excitatory neurotransmitter levels, when malfunctioning, involving in a wide range of neurological and physiological disorders. However, integral transmembrane proteins including the glutamate transporters remain notoriously difficult to study, due to their localization within the cell membrane. Here we present the structural bioinformatics studies of glutamate transporters and their water-soluble variants generated through QTY-code, a protein design strategy based on systematic amino acid substitutions. These include 2 structures determined by X-ray crystallography, cryo-EM, and 6 predicted by AlphaFold2, and their predicted water-soluble QTY variants. In the native structures of glutamate transporters, transmembrane helices contain hydrophobic amino acids such as leucine (L), isoleucine (I), and phenylalanine (F). To design water-soluble variants, these hydrophobic amino acids are systematically replaced by hydrophilic amino acids, namely glutamine (Q), threonine (T) and tyrosine (Y). The QTY variants exhibited water-solubility, with four having identical isoelectric focusing points (pI) and the other four having very similar pI. We present the superposed structures of the native glutamate transporters and their water-soluble QTY variants. The superposed structures displayed remarkable similarity with RMSD 0.528Å-2.456Å, despite significant protein transmembrane sequence differences (41.1%->53.8%). Additionally, we examined the differences of hydrophobicity patches between the native glutamate transporters and their QTY variants. Upon closer inspection, we discovered multiple natural variations of L->Q, I->T, F->Y and Q->L, T->I, Y->F in these transporters. Some of these natural variations were benign and the remaining were reported in specific neurological disorders. We further investigated the characteristics of hydrophobic to hydrophilic substitutions in glutamate transporters, utilizing variant analysis and evolutionary profiling. Our structural bioinformatics studies not only provided insight into the differences between the hydrophobic helices and hydrophilic helices in the glutamate transporters, but they are also expected to stimulate further study of other water-soluble transmembrane proteins.
Collapse
Affiliation(s)
- Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Eva Smorodina
- Laboratory for Computational and Systems Immunology, Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
4
|
Dey S, Rout M, Pati S, Singh MK, Dehury B, Subudhi E. All-atoms molecular dynamics study to screen potent efflux pump inhibitors against KpnE protein of Klebsiella pneumoniae. J Biomol Struct Dyn 2024; 42:3492-3506. [PMID: 37218086 DOI: 10.1080/07391102.2023.2214232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
The Small Multidrug Resistance efflux pump protein KpnE, plays a pivotal role in multi-drug resistance in Klebsiella pneumoniae. Despite well-documented study of its close homolog, EmrE, from Escherichia coli, the mechanism of drug binding to KpnE remains obscure due to the absence of a high-resolution experimental structure. Herein, we exclusively elucidate its structure-function mechanism and report some of the potent inhibitors through drug repurposing. We used molecular dynamics simulation to develop a dimeric structure of KpnE and explore its dynamics in lipid-mimetic bilayers. Our study identified both semi-open and open conformations of KpnE, highlighting its importance in transport process. Electrostatic surface potential map suggests a considerable degree of similarity between KpnE and EmrE at the binding cleft, mostly occupied by negatively charged residues. We identify key amino acids Glu14, Trp63 and Tyr44, indispensable for ligand recognition. Molecular docking and binding free energy calculations recognizes potential inhibitors like acarbose, rutin and labetalol. Further validations are needed to confirm the therapeutic role of these compounds. Altogether, our membrane dynamics study uncovers the crucial charged patches, lipid-binding sites and flexible loop that could potentiate substrate recognition, transport mechanism and pave the way for development of novel inhibitors against K. pneumoniae.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suchanda Dey
- Biomics and Biodiversity lab, Siksha 'O' Anusandhan (deemed to be) University, Bhubaneswar, Odisha, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Enketeswara Subudhi
- Biomics and Biodiversity lab, Siksha 'O' Anusandhan (deemed to be) University, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Suleman M, Khattak A, Akbar F, Rizwan M, Tayyab M, Yousaf M, Khan A, Albekairi NA, Agouni A, Crovella S. Analysis of E2F1 single-nucleotide polymorphisms reveals deleterious non-synonymous substitutions that disrupt E2F1-RB protein interaction in cancer. Int J Biol Macromol 2024; 260:129559. [PMID: 38242392 DOI: 10.1016/j.ijbiomac.2024.129559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Cancer is a medical condition that is caused by the abnormal growth and division of cells, leading to the formation of tumors. The E2F1 and RB pathways are critical in regulating cell cycle, and their dysregulation can contribute to the development of cancer. In this study, we analyzed experimentally reported SNPs in E2F1 and assessed their effects on the binding affinity with RB. Out of 46, nine mutations were predicted as deleterious, and further analysis revealed four highly destabilizing mutations (L206W, R232C, I254T, A267T) that significantly altered the protein structure. Molecular docking of wild-type and mutant E2F1 with RB revealed a docking score of -242 kcal/mol for wild-type, while the mutant complexes had scores ranging from -217 to -220 kcal/mol. Molecular simulation analysis revealed variations in the dynamics features of both mutant and wild-type complexes due to the acquired mutations. Furthermore, the total binding free energy for the wild-type E2F1-RB complex was -64.89 kcal/mol, while those of the L206W, R232C, I254T, and A267T E2F1-RB mutants were -45.90 kcal/mol, -53.52 kcal/mol, -55.67 kcal/mol, and -61.22 kcal/mol, respectively. Our study is the first to extensively analyze E2F1 gene mutations and identifies candidate mutations for further validation and potential targeting for cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC) Qatar University, Doha, Qatar; Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Aishma Khattak
- Department of Bioinformatics, Shaheed Benazir butto women university Peshawar, Pakistan
| | - Fazal Akbar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan.
| | - Muhammad Tayyab
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar.
| | - Muhammad Yousaf
- Centre for Animal Sciences and Fisheries, University of Swat, Swat, Pakistan.
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC) Qatar University, Doha, Qatar.
| |
Collapse
|
6
|
Thakur S, Planeta Kepp K, Mehra R. Predicting virus Fitness: Towards a structure-based computational model. J Struct Biol 2023; 215:108042. [PMID: 37931730 DOI: 10.1016/j.jsb.2023.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Predicting the impact of new emerging virus mutations is of major interest in surveillance and for understanding the evolutionary forces of the pathogens. The SARS-CoV-2 surface spike-protein (S-protein) binds to human ACE2 receptors as a critical step in host cell infection. At the same time, S-protein binding to human antibodies neutralizes the virus and prevents interaction with ACE2. Here we combine these two binding properties in a simple virus fitness model, using structure-based computation of all possible mutation effects averaged over 10 ACE2 complexes and 10 antibody complexes of the S-protein (∼380,000 computed mutations), and validated the approach against diverse experimental binding/escape data of ACE2 and antibodies. The ACE2-antibody selectivity change caused by mutation (i.e., the differential change in binding to ACE2 vs. immunity-inducing antibodies) is proposed to be a key metric of fitness model, enabling systematic error cancelation when evaluated. In this model, new mutations become fixated if they increase the selective binding to ACE2 relative to circulating antibodies, assuming that both are present in the host in a competitive binding situation. We use this model to categorize viral mutations that may best reach ACE2 before being captured by antibodies. Our model may aid the understanding of variant-specific vaccines and molecular mechanisms of viral evolution in the context of a human host.
Collapse
Affiliation(s)
- Shivani Thakur
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg - 491001, Chhattisgarh, India
| | - Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800 Kongens Lyngby, Denmark
| | - Rukmankesh Mehra
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg - 491001, Chhattisgarh, India; Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Kutelabhata, Durg - 491001, Chhattisgarh, India.
| |
Collapse
|
7
|
Farajzadeh-Dehkordi M, Mafakher L, Harifi A, Samiee-Rad F, Rahmani B. Computational analysis of the functional and structural impact of the most deleterious missense mutations in the human Protein C. PLoS One 2023; 18:e0294417. [PMID: 38015884 PMCID: PMC10683990 DOI: 10.1371/journal.pone.0294417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Protein C (PC) is a vitamin K-dependent factor that plays a crucial role in controlling anticoagulant processes and acts as a cytoprotective agent to promote cell survival. Several mutations in human PC are associated with decreased protein production or altered protein structure, resulting in PC deficiency. In this study, we conducted a comprehensive analysis of nonsynonymous single nucleotide polymorphisms in human PC to prioritize and confirm the most high-risk mutations predicted to cause disease. Of the 340 missense mutations obtained from the NCBI database, only 26 were classified as high-risk mutations using various bioinformatic tools. Among these, we identified that 12 mutations reduced the stability of protein, and thereby had the greatest potential to disturb protein structure and function. Molecular dynamics simulations revealed moderate alterations in the structural stability, flexibility, and secondary structural organization of the serine protease domain of human PC for five missense mutations (L305R, W342C, G403R, V420E, and W444C) when compared to the native structure that could maybe influence its interaction with other molecules. Protein-protein interaction analyses demonstrated that the occurrence of these five mutations can affect the regular interaction between PC and activated factor V. Therefore, our findings assume that these mutants can be used in the identification and development of therapeutics for diseases associated with PC dysfunction, although assessment the effect of these mutations need to be proofed in in-vitro.
Collapse
Affiliation(s)
- Mahvash Farajzadeh-Dehkordi
- Cellular and Molecular Research Center, Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Harifi
- Department of Electrical and Computer Engineering, University of Hormozgan, Bandar Abbas, Iran
| | - Fatemeh Samiee-Rad
- Cellular and Molecular Research Center, Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Pathobiology, Faculty of Medical School, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Babak Rahmani
- Cellular and Molecular Research Center, Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
8
|
Thakur S, Verma RK, Kepp KP, Mehra R. Modelling SARS-CoV-2 spike-protein mutation effects on ACE2 binding. J Mol Graph Model 2023; 119:108379. [PMID: 36481587 PMCID: PMC9690204 DOI: 10.1016/j.jmgm.2022.108379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
The binding affinity of the SARS-CoV-2 spike (S)-protein to the human membrane protein ACE2 is critical for virus function. Computational structure-based screening of new S-protein mutations for ACE2 binding lends promise to rationalize virus function directly from protein structure and ideally aid early detection of potentially concerning variants. We used a computational protocol based on cryo-electron microscopy structures of the S-protein to estimate the change in ACE2-affinity due to S-protein mutation (ΔΔGbind) in good trend agreement with experimental ACE2 affinities. We then expanded predictions to all possible S-protein mutations in 21 different S-protein-ACE2 complexes (400,000 ΔΔGbind data points in total), using mutation group comparisons to reduce systematic errors. The results suggest that mutations that have arisen in major variants as a group maintain ACE2 affinity significantly more than random mutations in the total protein, at the interface, and at evolvable sites. Omicron mutations as a group had a modest change in binding affinity compared to mutations in other major variants. The single-mutation effects seem consistent with ACE2 binding being optimized and maintained in omicron, despite increased importance of other selection pressures (antigenic drift), however, epistasis, glycosylation and in vivo conditions will modulate these effects. Computational prediction of SARS-CoV-2 evolution remains far from achieved, but the feasibility of large-scale computation is substantially aided by using many structures and mutation groups rather than single mutation effects, which are very uncertain. Our results demonstrate substantial challenges but indicate ways forward to improve the quality of computer models for assessing SARS-CoV-2 mutation effects.
Collapse
Affiliation(s)
- Shivani Thakur
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, 492015, Chhattisgarh, India
| | - Rajaneesh Kumar Verma
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, 492015, Chhattisgarh, India
| | - Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark.
| | - Rukmankesh Mehra
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, 492015, Chhattisgarh, India.
| |
Collapse
|
9
|
Chen L, Huang X, Li Y, Zhao B, Liang M, Wang R. Structural and energetic basis of interaction between human estrogen-related receptor γ and environmental endocrine disruptors from multiple molecular dynamics simulations and free energy predictions. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130174. [PMID: 36265380 DOI: 10.1016/j.jhazmat.2022.130174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Environmental endocrine disruptors (EEDs), a class of molecules that are widespread in our environment, may adversely affect the endocrine system. Exploring the interactions between these compounds and their potential targets is important for assessing their role in the organism. Focused on the human estrogen-related receptor γ (hERRγ) with BPA, BPB, HPTE, BPE, BP(2,2)(Et), and BP(2,2)(MeO) complexes, respectively, we groped for the mechanisms of conformational changes and interactions of hERRγ when binding to these six EEDs by combining multiple molecular dynamics (MD) simulations with energy prediction (MM-PBSA and solvated interaction energy (SIE)). Dynamics analysis results revealed these six EEDs have different effects on the internal dynamics of hERRγ, resulting in significant changes in the interaction of key residues around Leu268, Val313, Leu345, and Phe435 with EEDs, and thus affected its binding energy with these EEDs. The energy calculations further demonstrated that van der Waals interactions are critical for these EEDs binding to hERRγ. These results present detailed molecular insight into the interaction features between EEDs and hERRγ and help guide the search for safer alternatives to BPA.
Collapse
Affiliation(s)
- Lin Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Xu Huang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Yufei Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, PR China
| | - Min Liang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Ruige Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| |
Collapse
|
10
|
Suleman M, Umme-I-Hani S, Salman M, Aljuaid M, Khan A, Iqbal A, Hussain Z, Ali SS, Ali L, Sher H, Waheed Y, Wei DQ. Sequence-structure functional implications and molecular simulation of high deleterious nonsynonymous substitutions in IDH1 revealed the mechanism of drug resistance in glioma. Front Pharmacol 2022; 13:927570. [PMID: 36188571 PMCID: PMC9523485 DOI: 10.3389/fphar.2022.927570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
In the past few years, various somatic point mutations of isocitrate dehydrogenase (IDH) encoding genes (IDH1 and IDH2) have been identified in a broad range of cancers, including glioma. Despite the important function of IDH1 in tumorigenesis and its very polymorphic nature, it is not yet clear how different nsSNPs affect the structure and function of IDH1. In the present study, we employed different machine learning algorithms to screen nsSNPs in the IDH1 gene that are highly deleterious. From a total of 207 SNPs, all of the servers classified 80 mutations as deleterious. Among the 80 deleterious mutations, 14 were reported to be highly destabilizing using structure-based prediction methods. Three highly destabilizing mutations G15E, W92G, and I333S were further subjected to molecular docking and simulation validation. The docking results and molecular simulation analysis further displayed variation in dynamics features. The results from molecular docking and binding free energy demonstrated reduced binding of the drug in contrast to the wild type. This, consequently, shows the impact of these deleterious substitutions on the binding of the small molecule. PCA (principal component analysis) and FEL (free energy landscape) analysis revealed that these mutations had caused different arrangements to bind small molecules than the wild type where the total internal motion is decreased, thus consequently producing minimal binding effects. This study is the first extensive in silico analysis of the IDH1 gene that can narrow down the candidate mutations for further validation and targeting for therapeutic purposes.
Collapse
Affiliation(s)
- Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Mohammed Aljuaid
- Department of Health Administration, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Henan, China
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Hussain
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Liaqat Ali
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Hassan Sher
- Centre for Plant Science and Biodiversity, University of Swat, Charbagh, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- *Correspondence: Yasir Waheed, ; Dong-Qing Wei,
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Henan, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
- *Correspondence: Yasir Waheed, ; Dong-Qing Wei,
| |
Collapse
|
11
|
Shi Y, Sheng M, Zhou Q, Liao Y, Lv L, Yang J, Peng X, Cen S, Dai X, Shi X. Construction of the small intestine on molecular dynamics simulation and preliminary exploration of drug intestinal absorption prediction. Comput Biol Chem 2022; 99:107724. [PMID: 35816977 DOI: 10.1016/j.compbiolchem.2022.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
In this study, molecular dynamics simulation was applied to the construction of the small intestinal epithelial cell membrane and prediction of drug absorption. First, we constructed a system of a small intestinal epithelial cell membrane that was close to the real proportion and investigated the effects of temperature, water layer thickness, and ionic strength on membrane properties to optimize environmental parameters. Next, three drugs with different absorptivity, including Ephedrine (EPH), Quercetin (QUE), and Baicalin (BAI), were selected as model drugs to study the ability of drugs through the membrane by the free diffusion and umbrella sampling simulation, and the drug permeation ability was characterized by the free diffusion coefficient D and free energy barrier (△G) in the processes. The results showed that the free diffusion coefficient D and △G orders of the three drugs were consistent with the classical experimental absorption order, indicating that these two parameters could be used to jointly characterize the membrane permeability of the drugs.
Collapse
Affiliation(s)
- Yanshuang Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qing Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuyao Liao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lijing Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaqi Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - XingXing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 100029, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 100029, China.
| |
Collapse
|
12
|
De-Simone SG, Napoleão-Pêgo P, Gonçalves PS, Lechuga GC, Mandonado A, Graeff-Teixeira C, Provance DW. Angiostrongilus cantonensis an Atypical Presenilin: Epitope Mapping, Characterization, and Development of an ELISA Peptide Assay for Specific Diagnostic of Angiostrongyliasis. MEMBRANES 2022; 12:membranes12020108. [PMID: 35207030 PMCID: PMC8878667 DOI: 10.3390/membranes12020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/10/2022]
Abstract
Background: Angiostrongyliasis, the leading cause universal of eosinophilic meningitis, is an emergent disease due to Angiostrongylus cantonensis (rat lungworm) larvae, transmitted accidentally to humans. The diagnosis of human angiostrongyliasis is based on epidemiologic characteristics, clinical symptoms, medical history, and laboratory findings, particularly hypereosinophilia in blood and cerebrospinal fluid. Thus, the diagnosis is difficult and often confused with those produced by other parasitic diseases. Therefore, the development of a fast and specific diagnostic test for angiostrongyliasis is a challenge mainly due to the lack of specificity of the described tests, and therefore, the characterization of a new target is required. Material and Methods: Using bioinformatics tools, the putative presenilin (PS) protein C7BVX5-1 was characterized structurally and phylogenetically. A peptide microarray approach was employed to identify single and specific epitopes, and tetrameric epitope peptides were synthesized to evaluate their performance in an ELISA-peptide assay. Results: The data showed that the A. cantonensis PS protein presents nine transmembrane domains, the catalytic aspartyl domain [(XD (aa 241) and GLGD (aa 332–335)], between TM6 and TM7 and the absence of the PALP and other characteristics domains of the class A22 and homologous presenilin (PSH). These individualities make it an atypical sub-branch of the PS family, located in a separate subgroup along with the enzyme Haemogonchus contournus and separated from other worm subclasses. Twelve B-linear epitopes were identified by microarray of peptides and validated by ELISA using infected rat sera. In addition, their diagnostic performance was demonstrated by an ELISA-MAP4 peptide. Conclusions: Our data show that the putative AgPS is an atypical multi-pass transmembrane protein and indicate that the protein is an excellent immunological target with two (PsAg3 and PsAg9) A. costarisencis cross-reactive epitopes and eight (PsAg1, PsAg2, PsAg6, PsAg7, PsAg8, PsAg10, PsAg11, PsAg12) apparent unique A. cantonensis epitopes. These epitopes could be used in engineered receptacle proteins to develop a specific immunological diagnostic assay for angiostrongyliasis caused by A. cantonensis.
Collapse
Affiliation(s)
- Salvatore G. De-Simone
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24220-900, RJ, Brazil
- Correspondence:
| | - Paloma Napoleão-Pêgo
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
| | - Priscila S. Gonçalves
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24220-900, RJ, Brazil
| | - Guilherme C. Lechuga
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
| | - Arnaldo Mandonado
- Laboratory of Biology and Parasitology of Wild Mammals Reservoirs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Carlos Graeff-Teixeira
- Infectious Diseases Unit, Department of Pathology, Federal University of Espirito Santo, Vitória 29075-910, ES, Brazil;
| | - David W. Provance
- Center of Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Diseases (INCT-IDN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (P.N.-P.); (P.S.G.); (G.C.L.); (D.W.P.J.)
| |
Collapse
|
13
|
Behera BK, Parhi J, Dehury B, Rout AK, Khatei A, Devi AL, Mandal SC. Molecular characterization and structural dynamics of Aquaporin1 from walking catfish in lipid bilayers. Int J Biol Macromol 2021; 196:86-97. [PMID: 34914911 DOI: 10.1016/j.ijbiomac.2021.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023]
Abstract
Aquaporin's (AQPs) are the major superfamily of small integral membrane proteins that facilitates transportation of water, urea, ammonia, glycerol and ions across biological cell membranes. Despite of recent advancements made in understanding the biology of Aquaporin's, only few isoforms of aquaporin 1 (AQP1) some of the teleost fish species have been characterized at molecular scale. In this study, we made an attempt to elucidate the molecular mechanism of water transportation in AQP1 from walking catfish (Clarias batrachus), a model species capable of breathing in air and inhabits in challenging environments. Using state-of-the-art computational modelling and all-atoms molecular dynamics simulation, we explored the structural dynamics of full-length aquaporin 1 from walking catfish (CbAQP1) in lipid mimetic bilayers. Unlike AQP1 of human and bovine, structural ensembles of CbAQP1 from MD revealed discrete positioning of pore lining residues at the intracellular end. Snapshots from MD simulation displayed differential dynamics of aromatic/arginine (ar/R) filter and extracellular loop C bridging transmembrane (TM) helix H3 and H4. Distinct conformation of large extracellular loops, loop bridging TM2 domain and HB helix along with positioning of selectivity filter lining residues controls the permeability of water across the bilayer. Moreover, the identified unique and conserved lipid binding sites with 100% lipid occupancy signifies lipid mediated structural dynamics of CbAQP1. All-together, this is the first ever report on structural-dynamics of aquaporin 1 in walking catfish which will be useful to understand the molecular basis of transportation of water and other small molecules under varying degree of hyperosmotic environment.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India.
| | - Janmejay Parhi
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Budheswar Dehury
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India; Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Ananya Khatei
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Asem Lembika Devi
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| | - Sagar Chandra Mandal
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura 799210, India
| |
Collapse
|
14
|
Santiago Á, Guzmán-Ocampo DC, Aguayo-Ortiz R, Dominguez L. Characterizing the Chemical Space of γ-Secretase Inhibitors and Modulators. ACS Chem Neurosci 2021; 12:2765-2775. [PMID: 34291906 DOI: 10.1021/acschemneuro.1c00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
γ-Secretase (GS) is one of the most attractive molecular targets for the treatment of Alzheimer's disease (AD). Its key role in the final step of amyloid-β peptides generation and its relationship in the cascade of events for disease development have caught the attention of many pharmaceutical groups. Over the past years, different inhibitors and modulators have been evaluated as promising therapeutics against AD. However, despite the great chemical diversity of the reported compounds, a global classification and visual representation of the chemical space for GS inhibitors and modulators remain unavailable. In the present work, we carried out a two-dimensional (2D) chemical space analysis from different classes and subclasses of GS inhibitors and modulators based on their structural similarity. Along with the novel structural information available for GS complexes, our analysis opens the possibility to identify compounds with high molecular similarity, critical to finding new chemical structures through the optimization of existing compounds and relating them with a potential binding site.
Collapse
Affiliation(s)
- Ángel Santiago
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Dulce C. Guzmán-Ocampo
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
15
|
Rout AK, Acharya V, Maharana D, Dehury B, Udgata SR, Jena R, Behera B, Parida PK, Behera BK. Insights into structure and dynamics of extracellular domain of Toll-like receptor 5 in Cirrhinus mrigala (mrigala): A molecular dynamics simulation approach. PLoS One 2021; 16:e0245358. [PMID: 33444377 PMCID: PMC7808660 DOI: 10.1371/journal.pone.0245358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
The toll-like receptor 5 (TLR5) is the most conserved important pattern recognition receptors (PRRs) often stimulated by bacterial flagellins and plays a major role in the first-line defense against invading pathogenic bacteria and in immune homeostasis. Experimental crystallographic studies have shown that the extracellular domain (ECD) of TLR5 recognizes flagellin of bacteria and functions as a homodimer in model organism zebrafish. However, no structural information is available on TLR5 functionality in the major carp Cirrhinus mrigala (mrigala) and its interaction with bacterial flagellins. Therefore, the present study was undertaken to unravel the structural basis of TLR5-flagellin recognition in mrigala using structural homodimeric TLR5-flagellin complex of zebrafish as reference. Integrative structural modeling and molecular dynamics simulations were employed to explore the structural and mechanistic details of TLR5 recognition. Results from structural snapshots of MD simulation revealed that TLR5 consistently formed close interactions with the three helices of the D1 domain in flagellin on its lateral side mediated by several conserved amino acids. Results from the intermolecular contact analysis perfectly substantiate with the findings of per residue-free energy decomposition analysis. The differential recognition mediated by flagellin to TLR5 in mrigala involves charged residues at the interface of binding as compared to the zebrafish complex. Overall our results shows TLR5 of mrigala involved in innate immunity specifically recognized a conserved site on flagellin which advocates the scientific community to explore host-specific differences in receptor activation.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Aquatic Environmental Biotechnology & Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Varsha Acharya
- Aquatic Environmental Biotechnology & Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Diptimayee Maharana
- Aquatic Environmental Biotechnology & Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
| | - Budheswar Dehury
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sheela Rani Udgata
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Rajkumar Jena
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, India
| | - Bhaskar Behera
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, India
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology & Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
- * E-mail: (BKB); (PKP)
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology & Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, West Bengal, India
- * E-mail: (BKB); (PKP)
| |
Collapse
|
16
|
Dehury B, Kepp KP. Membrane dynamics of γ-secretase with the anterior pharynx-defective 1B subunit. J Cell Biochem 2020; 122:69-85. [PMID: 32830360 DOI: 10.1002/jcb.29832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023]
Abstract
The four-subunit protease complex γ-secretase cleaves many single-pass transmembrane (TM) substrates, including Notch and β-amyloid precursor protein to generate amyloid-β (Aβ), central to Alzheimer's disease. Two of the subunits anterior pharynx-defective 1 (APH-1) and presenilin (PS) exist in two homologous forms APH1-A and APH1-B, and PS1 and PS2. The consequences of these variations are poorly understood and could affect Aβ production and γ-secretase medicine. Here, we developed the first complete structural model of the APH-1B subunit using the published cryo-electron microscopy (cryo-EM) structures of APH1-A (Protein Data Bank: 5FN2, 5A63, and 6IYC). We then performed all-atom molecular dynamics simulations at 303 K in a realistic bilayer system to understand both APH-1B alone and in γ-secretase without and with substrate C83-bound. We show that APH-1B adopts a 7TM topology with a water channel topology similar to APH-1A. We demonstrate direct transport of water through this channel, mainly via Glu84, Arg87, His170, and His196. The apo and holo states closely resemble the experimental cryo-EM structures with APH-1A, however with subtle differences: The substrate-bound APH-1B γ-secretase was quite stable, but some TM helices of PS1 and APH-1B rearranged in the membrane consistent with the disorder seen in the cryo-EM data. This produces different accessibility of water molecules for the catalytic aspartates of PS1, critical for Aβ production. In particular, we find that the typical distance between the catalytic aspartates of PS1 and the C83 cleavage sites are shorter in APH-1B, that is, it represents a more closed state, due to interactions with the C-terminal fragment of PS1. Our structural-dynamic model of APH-1B alone and in γ-secretase suggests generally similar topology but some notable differences in water accessibility which may be relevant to the protein's existence in two forms and their specific function and location.
Collapse
Affiliation(s)
- Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Dehury B, Tang N, Mehra R, Blundell TL, Kepp KP. Side-by-side comparison of Notch- and C83 binding to γ-secretase in a complete membrane model at physiological temperature. RSC Adv 2020; 10:31215-31232. [PMID: 35520661 PMCID: PMC9056423 DOI: 10.1039/d0ra04683c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/15/2020] [Indexed: 12/29/2022] Open
Abstract
γ-Secretase cleaves the C99 fragment of the amyloid precursor protein, leading to formation of aggregated β-amyloid peptide central to Alzheimer's disease, and Notch, essential for cell regulation. Recent cryogenic electron microscopy (cryo-EM) structures indicate major changes upon substrate binding, a β-sheet recognition motif, and a possible helix unwinding to expose peptide bonds towards nucleophilic attack. Here we report side-by-side comparison of the 303 K dynamics of the two proteins in realistic membranes using molecular dynamics simulations. Our ensembles agree with the cryo-EM data (full-protein Cα-RMSD = 1.62–2.19 Å) but reveal distinct presenilin helix conformation states and thermal β-strand to coil transitions of C83 and Notch100. We identify distinct 303 K hydrogen bond dynamics and water accessibility of the catalytic sites. The RKRR motif (1758–1761) contributes significantly to Notch binding and serves as a “membrane anchor” that prevents Notch displacement. Water that transiently hydrogen bonds to G1753 and V1754 probably represents the catalytic nucleophile. At 303 K, Notch and C83 binding induce different conformation states, with Notch mostly present in a closed state with shorter Asp–Asp distance. This may explain the different outcome of Notch and C99 cleavage, as the latter is more imprecise with many products. Our identified conformation states may aid efforts to develop conformation-selective drugs that target C99 and Notch cleavage differently, e.g. Notch-sparing γ-secretase modulators. Distinct membrane dynamics and conformations of C83- and Notch-bound γ-secretase may aid the development of Notch-sparing treatments of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409.,Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Ning Tang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Rukmankesh Mehra
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Kasper P Kepp
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| |
Collapse
|
18
|
Mehra R, Kepp KP. Identification of Structural Calcium Binding Sites in Membrane-Bound Presenilin 1 and 2. J Phys Chem B 2020; 124:4697-4711. [PMID: 32420742 DOI: 10.1021/acs.jpcb.0c01712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Variants of presenilin (PS1 and PS2) are the main genetic risk factors of familial Alzheimer's disease and thus central to the disease etiology. Although mostly studied as catalytic units of γ-secretase controlling Aβ production, presenilins also affect calcium levels, which are disturbed in Alzheimer's disease. We investigated the interaction of calcium with both PS1 and PS2 using all-atom molecular dynamics (MD) simulations in realistic membrane models, with the specific aim to identify any Ca2+ sites. We did not observe any complete Ca2+ leak event, but we identified four persistent Ca2+ sites in membrane-bound PS1 and PS2: One in HL2 near the C-terminal of TM6, one in HL2 toward the N-terminal of TM7, a site at the catalytic aspartate on TM7, and a site at the PALP motif on TM9. The sites feature negatively charged glutamates and aspartates typical of calcium binding. Structural homology to diaspartate calcium transport proteins and mutation studies of calcium efflux support our identified calcium sites. Calcium consistently dampens HL2 motions in all comparisons (PS1, protonated PS1, PS2, protonated PS2). Due to their location in HL2 and the active site, we propose that the calcium sites control autoproteolytic maturation of presenilin by a pH-dependent conformational restriction of the HL2 recognition loop, which also regulates calcium transport proteins such as inositol 1,4,5-triphosphate receptor and ryanodine receptor. Our structural dynamics could provide a possible molecular basis for the need of both calcium and presenilin for lysosome proteolytic function, perhaps relevant also to other protein misfolding diseases.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark
| | - Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Yadav DK, Kumar S, Choi EH, Kim MH. Electric-field-induced electroporation and permeation of reactive oxygen species across a skin membrane. J Biomol Struct Dyn 2020; 39:1343-1353. [PMID: 32072876 DOI: 10.1080/07391102.2020.1730972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electroporation processes affect the permeability of cell membranes, which can be utilized for the delivery of plasma species in cancer therapy. By means of computational dynamics, many aspects of membrane electroporation have been unveiled at the atomic level for lipid membranes. Herein, a molecular dynamics simulation study was performed on native and oxidized membrane systems with transversal electric fields. The simulation result shows that the applied electric field mainly affects the membrane properties so that electroporation takes place and these pores are lined by hydrophilic headgroups of the lipid components. The calculated hydrophobic thickness, lateral diffusion and pair correlation revealed the role of 5α-CH in creation of water-pore in an oxidized membrane. Additionally, the permeability of reactive oxygen species was examined through these electroporated systems. The permeability study suggested that water pores in the membrane facilitate the penetration of these species across the membrane to the interior of the cell. These findings may have significance in experimental applications in vivo as once the reactive oxygen species reaches the interior of the cell, they may cause oxidative stress and induce apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Surendra Kumar
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center/PDP Research Center, Kwangwoon University, Seoul, South Korea
| | - Mi-Hyun Kim
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea.,Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
20
|
Kumar S, Rana R, Yadav DK. Atomic-scale modeling of the effect of lipid peroxidation on the permeability of reactive species. J Biomol Struct Dyn 2020; 39:1284-1294. [PMID: 32072880 DOI: 10.1080/07391102.2020.1730971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomembranes and lipid systems are rich in unsaturated lipid components and are subject to photo-induced lipid peroxidation. The peroxidized lipid products in cellular systems are known to affect the structural organization and function of the biomembrane. We employed molecular dynamics simulations to study the effects of phospholipid peroxidation on membrane properties and the permeability of different reactive species. The results suggest that when the lipids are peroxidized, the peroxide group moves toward the membrane surface, which causes the membrane system to expand laterally and increase in area. The permeability profile revealed that nitrogen species can easily permeate through the native and peroxidized system in comparison to oxygen species, suggesting its importance in plasma-based treatment. Thus, by breaching the energy barrier with lower energy, they can traverse the cell membrane and induce oxidative stress, which leads to apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Dharmendra K Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
21
|
Pandurangan AP, Blundell TL. Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning. Protein Sci 2020; 29:247-257. [PMID: 31693276 PMCID: PMC6933854 DOI: 10.1002/pro.3774] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 02/02/2023]
Abstract
Next-generation sequencing methods have not only allowed an understanding of genome sequence variation during the evolution of organisms but have also provided invaluable information about genetic variants in inherited disease and the emergence of resistance to drugs in cancers and infectious disease. A challenge is to distinguish mutations that are drivers of disease or drug resistance, from passengers that are neutral or even selectively advantageous to the organism. This requires an understanding of impacts of missense mutations in gene expression and regulation, and on the disruption of protein function by modulating protein stability or disturbing interactions with proteins, nucleic acids, small molecule ligands, and other biological molecules. Experimental approaches to understanding differences between wild-type and mutant proteins are most accurate but are also time-consuming and costly. Computational tools used to predict the impacts of mutations can provide useful information more quickly. Here, we focus on two widely used structure-based approaches, originally developed in the Blundell lab: site-directed mutator (SDM), a statistical approach to analyze amino acid substitutions, and mutation cutoff scanning matrix (mCSM), which uses graph-based signatures to represent the wild-type structural environment and machine learning to predict the effect of mutations on protein stability. Here, we describe DUET that uses machine learning to combine the two approaches. We discuss briefly the development of mCSM for understanding the impacts of mutations on interfaces with other proteins, nucleic acids, and ligands, and we exemplify the wide application of these approaches to understand human genetic disorders and drug resistance mutations relevant to cancer and mycobacterial infections. STATEMENT FOR A BROADER AUDIENCE: Genetic or somatic changes in genes can lead to mutations in human proteins, which give rise to genetic disorders or cancer, or to genes of pathogens leading to drug resistance. Computer software described here, using statistical approaches or machine learning, uses the information from genome sequencing of humans and pathogens, together with experimental or modeled 3D structures of gene products, the proteins, to predict impacts of mutations in genetic disease, cancer and drug resistance.
Collapse
Affiliation(s)
- Arun Prasad Pandurangan
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - Tom L. Blundell
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
22
|
Kaur A, Shuaib S, Goyal D, Goyal B. Interactions of a multifunctional di-triazole derivative with Alzheimer's Aβ42monomer and Aβ42protofibril: a systematic molecular dynamics study. Phys Chem Chem Phys 2020; 22:1543-1556. [DOI: 10.1039/c9cp04775a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular dynamics simulations results highlighted that the multi-target-directed ligand6nstabilizes the native α-helix conformation of the Aβ42monomer and induces a sizable destabilization in the Aβ42protofibril structure.
Collapse
Affiliation(s)
- Anupamjeet Kaur
- Department of Chemistry
- Faculty of Basic and Applied Sciences
- Sri Guru Granth Sahib World University
- Fatehgarh Sahib-140406
- India
| | - Suniba Shuaib
- Department of Chemistry
- Faculty of Basic and Applied Sciences
- Sri Guru Granth Sahib World University
- Fatehgarh Sahib-140406
- India
| | - Deepti Goyal
- Department of Chemistry
- Faculty of Basic and Applied Sciences
- Sri Guru Granth Sahib World University
- Fatehgarh Sahib-140406
- India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry
- Thapar Institute of Engineering & Technology
- Patiala-147004
- India
| |
Collapse
|