Zuma LK, Gasa NL, Mazibuko X, Simelane MBC, Pillay P, Kwezi L, Tsekoa T, Pooe OJ. Recombinant Expression, Purification and PEGylation of DNA Ligases.
Protein Pept Lett 2022;
29:505-513. [PMID:
35657285 DOI:
10.2174/0929866529666220426122432]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND
Reagent proteins such as DNA ligases play a central role in the global reagents market. DNA ligases are routinely used and are vital in academic and science research environments. Their major functions include sealing nicks by linking the 5'-phosphorylated end to a 3'-hydroxyl end on the phosphodiester backbone of DNA, utilizing ATP or NADP molecules as an energy source.
OBJECTIVE
The current study sought to investigate the role of PEGylation on the biological activity of purified recombinant DNA ligases.
METHOD
We produced two recombinant DNA ligases (Ligsv081 and LigpET30) using E. coli expression system and subsequently purified using affinity chromatography. The produced proteins were conjugated to site specific PEGylation or non-specific PEGylation. FTIR and UV-VIS spectroscopy were used to analyze secondary structures of the PEG conjugated DNA ligases. Differential scanning fluorimetry was employed to assess the protein stability when subjected various PEGylation conditions.
RESULTS
In this study, both recombinant DNA ligases were successfully expressed and purified as homogenous proteins. Protein PEGylation enhanced ligation activity, increased transformation efficiency by 2-fold for plasmid ligations and reduced the formation of protein aggregates.
CONCLUSION
Taken together, site-specific PEGylation can potentially be explored to enhance the biological activity and stability of reagent proteins such as ligases.
Collapse