1
|
Verma NK, Raghav N. Molecular modeling of cellulose tosylate immobilized α-amylases: An in silico case study through MD simulation and refinement. Int J Biol Macromol 2024; 290:138808. [PMID: 39694388 DOI: 10.1016/j.ijbiomac.2024.138808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The use of enzymes as catalysts in industrial processes has been studied, and they offer more ecologically friendly options for chemical reactions. In the current work, we investigated the potential of molecular modeling to solve the ordinarily difficult problem of identifying the amino acids involved in the covalent mode of immobilization by in silico investigations. The immobilized α-Amylase on Cellulose tosylate (henceforth referred to as Celltos) shows extra peaks of OH and NH2, CN, SO, C-O-C, and CS. Celltos exhibits distinct ether, imine, and CS peaks, indicating the potential contribution of α-Amylase's hydroxyl, amino, and thiol groups towards immobilization with cellulose's tosylate group. The native amylase was processed for Molecular Dynamics simulation. The simulated amylase was found to be the root mean squarely deviated to 1.16 Å. Autodock Vina, GOLD, SwissDock, and iGemdock generate output averages of 6.164, 6.549, 9.313 & 137.811 and 5.903, 7.656, 9.752 & 132.218 for an unrefined and refined dataset, respectively. The catalytic site intactness values for unrefined and refined SAT9, SAT13, and LAT21 were 83.3 %, 100 %, 100 %, and 8.33 %, 0 %, and 0 %, respectively. Our findings were additionally confirmed by bond distance similarity computations.
Collapse
Affiliation(s)
| | - Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
2
|
Khator R, Monga V. Recent advances in the synthesis and medicinal perspective of pyrazole-based α-amylase inhibitors as antidiabetic agents. Future Med Chem 2024. [PMID: 38230638 DOI: 10.4155/fmc-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Diabetes is a serious health threat across the globe, claiming millions of lives worldwide. Among the various strategies employed, inhibition of α-amylase is a therapeutic protocol for the management of Type 2 diabetes mellitus. α-Amylase is a crucial enzyme involved in the breakdown of dietary starch into simpler units. However, the clinically used α-amylase inhibitors have various drawbacks. Therefore, design and development of novel α-amylase inhibitors have gained significant attention. The pyrazole motif has been identified as a versatile scaffold in medicinal chemistry, and recent studies have led to the identification of various pyrazole-based α-amylase inhibitors. This review compiles therapeutic implications of pyrazole-appended α-amylase inhibitors; their synthesis, biological activities, structure-activity relationships and molecular docking studies are discussed.
Collapse
Affiliation(s)
- Rakesh Khator
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| | - Vikramdeep Monga
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| |
Collapse
|
3
|
Hunt for α-amylase from metagenome and strategies to improve its thermostability: a systematic review. World J Microbiol Biotechnol 2022; 38:203. [PMID: 35999473 DOI: 10.1007/s11274-022-03396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
With the advent of green chemistry, the use of enzymes in industrial processes serves as an alternative to the conventional chemical catalysts. A high demand for sustainable processes for catalysis has brought a significant attention to hunt for novel enzymes. Among various hydrolases, the α-amylase has a gamut of biotechnological applications owing to its pivotal role in starch-hydrolysis. Industrial demand requires enzymes with thermostability and to ameliorate this crucial property, various methods such as protein engineering, directed evolution and enzyme immobilisation strategies are devised. Besides the traditional culture-dependent approach, metagenome from uncultured bacteria serves as a bountiful resource for novel genes/biocatalysts. Exploring the extreme-niches metagenome, advancements in protein engineering and biotechnology tools encourage the mining of novel α-amylase and its stable variants to tap its robust biotechnological and industrial potential. This review outlines α-amylase and its genetics, its catalytic domain architecture and mechanism of action, and various molecular methods to ameliorate its production. It aims to impart understanding on mechanisms involved in thermostability of α-amylase, cover strategies to screen novel genes from futile habitats and some molecular methods to ameliorate its properties.
Collapse
|
4
|
Lakshmi SA, Alexpandi R, Shafreen RMB, Tamilmuhilan K, Srivathsan A, Kasthuri T, Ravi AV, Shiburaj S, Pandian SK. Evaluation of antibiofilm potential of four-domain α-amylase from Streptomyces griseus against exopolysaccharides (EPS) of bacterial pathogens using Danio rerio. Arch Microbiol 2022; 204:243. [PMID: 35381886 DOI: 10.1007/s00203-022-02847-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
Abstract
Biofilm formation is a major issue in healthcare settings as 75% of nosocomial infection arises due to biofilm residing bacteria. Exopolysaccharides (EPS), a key component of the biofilm matrix, contribute to the persistence of cells in a complex milieu and defends greatly from exogenous stress and demolition. It has been shown to be vital for biofilm scaffold and pathogenic features. The present study was aimed to investigate the effectiveness of four domain-containing α-amylase from Streptomyces griseus (SGAmy) in disrupting the EPS of multidrug-resistant bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. In vitro analysis of preformed biofilm unveiled the antibiofilm efficacy of SGAmy against MRSA (85%, p < 0.05) and P. aeruginosa (82%, p < 0.05). The total carbohydrate content in the EPS matrix of MRSA and P. aeruginosa was significantly reduced to 71.75% (p < 0.01) and 74.09% (p < 0.01), respectively. The findings inferred from in vitro analysis were further corroborated through in vivo studies using an experimental model organism, Danio rerio. Remarkably, the survival rate was extended to 88.8% (p < 0.05) and 74.2% (p < 0.05) in MRSA and P. aeruginosa infected fishes, respectively. An examination of gills, kidneys, and intestines of D. rerio organs depicted the reduced level of microbial colonization in SGAmy-treated cohorts and these findings were congruent with bacterial enumeration results.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | - Rajaiah Alexpandi
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | | | - Kannapiran Tamilmuhilan
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | - Adimoolam Srivathsan
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | - Thirupathi Kasthuri
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | - Sugathan Shiburaj
- Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala, 695562, India.,Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | | |
Collapse
|
5
|
Janíčková Z, Janeček Š. In Silico Analysis of Fungal and Chloride-Dependent α-Amylases within the Family GH13 with Identification of Possible Secondary Surface-Binding Sites. Molecules 2021; 26:molecules26185704. [PMID: 34577174 PMCID: PMC8467227 DOI: 10.3390/molecules26185704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
This study brings a detailed bioinformatics analysis of fungal and chloride-dependent α-amylases from the family GH13. Overall, 268 α-amylase sequences were retrieved from subfamilies GH13_1 (39 sequences), GH13_5 (35 sequences), GH13_15 (28 sequences), GH13_24 (23 sequences), GH13_32 (140 sequences) and GH13_42 (3 sequences). Eight conserved sequence regions (CSRs) characteristic for the family GH13 were identified in all sequences and respective sequence logos were analysed in an effort to identify unique sequence features of each subfamily. The main emphasis was given on the subfamily GH13_32 since it contains both fungal α-amylases and their bacterial chloride-activated counterparts. In addition to in silico analysis focused on eventual ability to bind the chloride anion, the property typical mainly for animal α-amylases from subfamilies GH13_15 and GH13_24, attention has been paid also to the potential presence of the so-called secondary surface-binding sites (SBSs) identified in complexed crystal structures of some particular α-amylases from the studied subfamilies. As template enzymes with already experimentally determined SBSs, the α-amylases from Aspergillus niger (GH13_1), Bacillus halmapalus, Bacillus paralicheniformis and Halothermothrix orenii (all from GH13_5) and Homo sapiens (saliva; GH13_24) were used. Evolutionary relationships between GH13 fungal and chloride-dependent α-amylases were demonstrated by two evolutionary trees—one based on the alignment of the segment of sequences spanning almost the entire catalytic TIM-barrel domain and the other one based on the alignment of eight extracted CSRs. Although both trees demonstrated similar results in terms of a closer evolutionary relatedness of subfamilies GH13_1 with GH13_42 including in a wider sense also the subfamily GH13_5 as well as for subfamilies GH13_32, GH13_15 and GH13_24, some subtle differences in clustering of particular α-amylases may nevertheless be observed.
Collapse
Affiliation(s)
- Zuzana Janíčková
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, SK-91701 Trnava, Slovakia;
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Štefan Janeček
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, SK-91701 Trnava, Slovakia;
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
6
|
Kikani BA, Singh SP. Amylases from thermophilic bacteria: structure and function relationship. Crit Rev Biotechnol 2021; 42:325-341. [PMID: 34420464 DOI: 10.1080/07388551.2021.1940089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amylases hydrolyze starch to diverse products including dextrins and progressively smaller polymers of glucose units. Thermally stable amylases account for nearly 25% of the enzyme market. This review highlights the structural attributes of the α-amylases from thermophilic bacteria. Heterologous expression of amylases in suitable hosts is discussed in detail. Further, specific value maximization approaches, such as protein engineering and immobilization of the amylases are discussed in order to improve its suitability for varied applications on a commercial scale. The review also takes into account of the immobilization of the amylases on nanomaterials to increase the stability and reusability of the enzymes. The function-based metagenomics would provide opportunities for searching amylases with novel characteristics. The review is expected to explore novel amylases for future potential applications.
Collapse
Affiliation(s)
- Bhavtosh A Kikani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India.,P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
7
|
Vougogiannopoulou K, Corona A, Tramontano E, Alexis MN, Skaltsounis AL. Natural and Nature-Derived Products Targeting Human Coronaviruses. Molecules 2021; 26:448. [PMID: 33467029 PMCID: PMC7831024 DOI: 10.3390/molecules26020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/18/2023] Open
Abstract
The ongoing pandemic of severe acute respiratory syndrome (SARS), caused by the SARS-CoV-2 human coronavirus (HCoV), has brought the international scientific community before a state of emergency that needs to be addressed with intensive research for the discovery of pharmacological agents with antiviral activity. Potential antiviral natural products (NPs) have been discovered from plants of the global biodiversity, including extracts, compounds and categories of compounds with activity against several viruses of the respiratory tract such as HCoVs. However, the scarcity of natural products (NPs) and small-molecules (SMs) used as antiviral agents, especially for HCoVs, is notable. This is a review of 203 publications, which were selected using PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, evaluates the available literature since the discovery of the first human coronavirus in the 1960s; it summarizes important aspects of structure, function, and therapeutic targeting of HCoVs as well as NPs (19 total plant extracts and 204 isolated or semi-synthesized pure compounds) with anti-HCoV activity targeting viral and non-viral proteins, while focusing on the advances on the discovery of NPs with anti-SARS-CoV-2 activity, and providing a critical perspective.
Collapse
Affiliation(s)
- Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Biomedical Section, Laboratory of Molecular Virology, E block, Cittadella Universitaria di Monserrato, SS55409042 Monserrato, Italy; (A.C.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Biomedical Section, Laboratory of Molecular Virology, E block, Cittadella Universitaria di Monserrato, SS55409042 Monserrato, Italy; (A.C.); (E.T.)
| | - Michael N. Alexis
- Molecular Endocrinology Team, Inst of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Ave., 11635 Athens, Greece;
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| |
Collapse
|