1
|
Fatehi Y, Sahraei A, Mohammadi F. Myricetin and morin hydrate inhibit amyloid fibril formation of bovine α-lactalbumin (BLA). Int J Biol Macromol 2024; 254:127908. [PMID: 37939780 DOI: 10.1016/j.ijbiomac.2023.127908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Amyloid fibrils are self-assembled aggregates of proteins and peptides that can lead to a broad range of diseases called amyloidosis. So far, no definitive and approved treatment to target directly amyloid fibrils has been introduced. Nevertheless, the search for small molecules with ability to inhibit and suppress fibril formation is an active and promising area of the research. Herein, the binding interactions and inhibitory effects of myricetin and morin hydrate on the in vitro fibrillation of bovine α-lactalbumin (BLA) have been investigated. The intrinsic fluorescence of BLA was quenched by myricetin and morin hydrate through combination of the static and dynamic quenching along with non-radiative Förster energy transfer mechanisms. The binding of these two flavonoids to BLA were not accompanied by major alteration in the conformation of BLA as evidenced by CD studies. The results of the fluorescence quenching analyses indicated almost the same binding affinities of myricetin and morin hydrate toward BLA (Kb ~ 106 M-1). However, the results of thioflavin T (ThT) assays showed that myricetin is a stronger inhibitor against BLA fibrillation compared to morin hydrate.
Collapse
Affiliation(s)
- Yaser Fatehi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Amin Sahraei
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran.
| | - Fakhrossadat Mohammadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran.
| |
Collapse
|
2
|
Dawn A, Goswami V, Sapra S, Deep S. Nano-Formulation of Antioxidants as Effective Inhibitors of γD-Crystallin Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1330-1344. [PMID: 36627843 DOI: 10.1021/acs.langmuir.2c03263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The aggregation of crystallin proteins is related to cataracts and age-related macular degeneration. Apart from surgical replacement of the cataract lens, no other alternative treatment is available till date for this ailment. In the current work, we carried out an in-depth investigation of the effect of polyphenol-loaded nano-formulations on the aggregation of γD-crystallin. At first, the protein was allowed to form amorphous aggregates under denaturing conditions. Several polyphenols were then tried to inhibit the aggregation of the protein. Among the polyphenols tested, resveratrol and quercetin were found to be the most effective. Since polyphenols are prone to degradation, they were encapsulated in chitosan nanoparticles in order to provide ambient conditions for them to function effectively. The loading efficiency and polyphenol release kinetics were subsequently tested. Finally, the efficacy of resveratrol/quercetin-loaded chitosan nano-particles as inhibitors of γD-crystallin aggregation was confirmed in a series of experiments demonstrating the potency of the system in the prospective therapeutic intervention of eye ailments concerning self-assembly of γD-crystallin proteins.
Collapse
Affiliation(s)
- Amrita Dawn
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, Delhi, India
| | - Vishakha Goswami
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, Delhi, India
| | - Sameer Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, Delhi, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, Delhi, India
| |
Collapse
|
3
|
Islam S, Do M, Frank BS, Hom GL, Wheeler S, Fujioka H, Wang B, Minocha G, Sell DR, Fan X, Lampi KJ, Monnier VM. α-Crystallin chaperone mimetic drugs inhibit lens γ-crystallin aggregation: potential role for cataract prevention. J Biol Chem 2022; 298:102417. [PMID: 36037967 PMCID: PMC9525908 DOI: 10.1016/j.jbc.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency–approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket–binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the “NC pocket” (residues 50–150) of HγD and one spanning the “NC tail” (residues 56–61 to 168–174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.
Collapse
Affiliation(s)
- Sidra Islam
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Michael Do
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Brett S Frank
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Grant L Hom
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Samuel Wheeler
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Hisashi Fujioka
- Cryo-EM Core Facility, School of Medicine, Case Western Reserve University, Case Western Reserve University, Cleveland, OH 44016
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Dept of Nutrition, Case Western Reserve University, Cleveland, OH 44106
| | - Geeta Minocha
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - David R Sell
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Xingjun Fan
- Dept of Cell Biology and Anatomy, Augusta University, Georgia, GA 30912
| | - Kirsten J Lampi
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Vincent M Monnier
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106; Dept of Biochemistry, Case Western Reserve University, Cleveland OH 44106.
| |
Collapse
|
4
|
Sharma A, Sarmah S, Roy AS, Ghosh KS. Multispectroscopic studies on the molecular interactions between bovine gamma-globulin and borohydride-capped silver nanoparticles. LUMINESCENCE 2022; 37:1200-1207. [PMID: 35560509 DOI: 10.1002/bio.4276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 11/11/2022]
Abstract
Interactions between bovine gamma-globulin (BGG) and borohydride-capped silver nanoparticles (BAgNPs) were studied using dynamic light scattering and spectroscopic techniques like UV-Vis, fluorescence and circular dichroism. The results were compared with earlier reported[1] interactions between γ-globulin and citrate-coated AgNPs (CAgNPs). BAgNPs were synthesized and characterized. Irrespective of the coating on AgNPs, nanoparticles had formed ground state complexes with the protein. CAgNPs as well as BAgNPS had caused static quenching of tryptophan (Trp) fluorescence of the protein. The change in the capping agent from citrate to borohydride weakened the binding of nanoparticles with the protein. But the same change in capping agent had increased the- fluorescence quenching efficiency of AgNPs. Hydrogen bonding and van der Waals interactions were involved in BGG-BAgNPs complex similar to the CAgNPs complex with γ-globulin. Polarity of the Trp microenvironment in BGG was not altered by BAgNPs contrary to CAgNPs as supported by synchronous and three-dimensional fluorescence. Resonance light scattering experiment also suggested nano-bio conjugation. Far-UV and near-UV CD spectra respectively pointed towards changes in the secondary and tertiary structure of BGG by BAgNPs, which was not observed in case of CAgNPs.
Collapse
Affiliation(s)
- Anchal Sharma
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, India
| | - Sharat Sarmah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, India
| |
Collapse
|