1
|
Kocabay S, Alagöz MA, Akkaya B. Investigation of inhibitory effect of sulfated chitosan oligomer on human heparanase enzyme: in silico and in vitro studies. J Biomol Struct Dyn 2024:1-9. [PMID: 38410992 DOI: 10.1080/07391102.2024.2317421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024]
Abstract
Deaths from cancer are widespread worldwide and the numbers continue to increase day by day. During the disease progression of cancer in cells, many of its metabolic activities change. Increased heparanase enzyme release is just one example. Following heparanase enzyme activity, many molecules interact with the remodeling of glycosaminoglycan structures, which triggers the release of different enzymes, cytokines, and growth factors, including fibroblast growth factors (FGF1 and FGF2), vascular endothelial growth factor (VEGF), hepatocyte growth factor, transforming growth factor β and platelet-derived growth factor. These are the most important factors in metastasis due to the formation of new vascular structures caused by those elements. To reduce tumor growth and metastasis, various drugs have been designed by modifying chitosan and its derivatives. In this study, we used chitosan oligomer (A), sulfated chitosan oligomer (ShCsO) (B), heparin (C), phosphate monomer (D1) of PI-88 and sulfate monomer (D2) of PI-88 as heparanase inhibitors. We modified the chitosan oligomer with chlorosulfonic acid to synthesize ShCsO to investigate its inhibitory effects on human serum heparanase. Also examined were molecular docking; molecular dynamics (MD); adsorption, distribution, metabolism, elimination and toxicity (ADMET); and target prediction. ShCsO decreased enzyme activity at a concentration of 0.0001 mg/mL. The docking scores of A, B and C from in silico studies were -6.254, -6.936 and -6.980 kcal/mol, respectively, and the scores for the two different PI-88 monomers were -5.741 and -5.824 kcal/mol. These results show that ShCsO may be a potential drug candidate for treating cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samet Kocabay
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Inonu University, Malatya, Türkiye
| | - M Abdullah Alagöz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya, Türkiye
| | - Birnur Akkaya
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
2
|
Al-Jumaili MHA, Hamad AA, Hashem HE, Hussein AD, Muhaidi MJ, Ahmed MA, ALBANAA AHA, Siddique F, Bakr EA. Comprehensive Review on the Bis–heterocyclic Compounds and their Anticancer Efficacy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
2-Phenyl substituted Benzimidazole derivatives: Design, synthesis, and evaluation of their antiproliferative and antimicrobial activities. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Kurt AH, Ayaz L, Ayaz F, Seferoglu Z, Nural Y. A review on the design, synthesis, and structure-activity relationships of benzothiazole derivatives against hypoxic tumors. Curr Org Synth 2022; 19:772-796. [PMID: 35352663 DOI: 10.2174/1570179419666220330001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022]
Abstract
There has been a growing body of studies on benzothiazoles and benzothiazole derivatives as strong and effective antitumor agents against lung, liver, pancreas, breast, and brain tumors. Due to highly proliferative nature of the tumor cells, the oxygen levels get lower than that of a normal tissue in the tumor microenvironment. This situation is called as hypoxia and has been associated with increased ability for carcinogenesis. For the drug design and development strategies, hypoxic nature of the tumor tissues has been exploited more aggressively. Hypoxia itself acts as a signal initiating system to activate the pathways that eventually lead to the spread of the tumor cells into the different tissues, increases the rate of DNA damage and eventually ends up with more mutation levels that may increase the drug resistance. As one of the major mediators of hypoxic response, hypoxia inducible factors (HIFs) has been shown to activate to angiogenesis, metastasis, apoptosis resistance, and many other protumorigenic responses in cancer development. In the current review, we will be discussing the design, synthesis and structure-activity relationships of benzothiazole derivatives against hypoxic tumors such lung, liver, pancreas, breast and brain as potential anticancer drug candidates. The focus points of the study will be the biology behind carcinogenesis and how hypoxia contributes to the process, recent studies on benzothiazole and its derivatives as anti-cancer agents against hypoxic cancers, conclusions and future perspectives. We believe that this review will be useful for the researchers in the field of drug design during their studies to generate novel benzothiazole-containing hybrids against hypoxic tumors with higher efficacies.
Collapse
Affiliation(s)
- Akif Hakan Kurt
- Department of Medicinal Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, 14030, Bolu, Turkey
| | - Lokman Ayaz
- Department of Biochemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Furkan Ayaz
- Department of Biotechnology, Faculty of Arts and Science, Mersin University, 33343, Mersin, Turkey
| | - Zeynel Seferoglu
- Department of Chemistry, Faculty of Science, Gazi University, TR-06500, Ankara, Turkey
| | - Yahya Nural
- Advanced Technology, Research and Application Center, Mersin University, 33343 Mersin, Turkey
| |
Collapse
|
5
|
Tang W, Xu X, Gao Y, Tong H, Zhu Z, Liu B. Crystal structure of C 10H 10O 4. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C10H10O4, monoclinic, P21/c (no. 14), a = 9.464(6) Å, b = 10.302(7) Å, c = 10.589(7) Å, β = 114.174(11)°, V = 941.8(10) Å3, Z = 4, R
gt
(F) = 0.0453, wR
ref(F
2) = 0.1394, T = 173 K.
Collapse
Affiliation(s)
- Wenqiang Tang
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xi’an , China
| | - Xiaona Xu
- School of Pharmaceutical & Chemical Engineering, Xianyang Vocational Technical College , Xianyang , Shaanxi Province , China
| | - Yanrong Gao
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xi’an , China
| | - Hongjuan Tong
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xi’an , China
| | - Zhoujing Zhu
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xi’an , China
| | - Bin Liu
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xi’an , China
| |
Collapse
|
6
|
Kuzu B, Hepokur C, Alagoz MA, Burmaoglu S, Algul O. Synthesis, Biological Evaluation and
In Silico
Studies of Some 2‐Substituted Benzoxazole Derivatives as Potential Anticancer Agents to Breast Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202103559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Burak Kuzu
- Department of Pharmaceutical Chemistry Mersin University Faculty of Pharmacy 33169 Mersin Turkey
- Department of Pharmaceutical Chemistry Van Yuzuncu Yil University Faculty of Pharmacy 65080 Van Turkey
| | - Ceylan Hepokur
- Department of Basic Pharmaceutical Sciences Division of Biochemistry Sivas Cumhuriyet University Faculty of Pharmacy 58100 Sivas Turkey
| | - Mehmet Abdullah Alagoz
- Department of Pharmaceutical Chemistry Inonu University Faculty of Pharmacy 44280 Malatya Turkey
| | - Serdar Burmaoglu
- Chemistry Atatürk University Faculty of Science 25240 Erzurum Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry Mersin University Faculty of Pharmacy 33169 Mersin Turkey
- Pharmaceutical Chemistry Erzincan Binali Yildirim University Faculty of Pharmacy 24100 Erzincan Turkey
| |
Collapse
|
7
|
Duran N, Polat MF, Aktas DA, Alagoz MA, Ay E, Cimen F, Tek E, Anil B, Burmaoglu S, Algul O. New chalcone derivatives as effective against SARS-CoV-2 agent. Int J Clin Pract 2021; 75:e14846. [PMID: 34519118 PMCID: PMC8646589 DOI: 10.1111/ijcp.14846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/28/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023] Open
Abstract
AIMS Flavonoids and related compounds, such as quercetin-based antiviral drug Gene-Eden-VIR/Novirin, inhibit the protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The alkylated chalcones isolated from Angelica keiskei inhibit SARS-CoV proteases. In this study, we aimed to compare the anti-SARS CoV-2 activities of both newly synthesized chalcone derivatives and these two drugs. METHODS Determination of the potent antiviral activity of newly synthesized chalcone derivatives against SARS-CoV-2 by calculating the RT-PCR cycling threshold (Ct ) values. RESULTS Antiviral activities of the compounds varied because of being dose dependent. Compound 6, 7, 9, and 16 were highly effective against SARS-CoV-2 at the concentration of 1.60 µg/mL. Structure-based virtual screening was carried out against the most important druggable SARS-CoV-2 targets, viral RNA-dependent RNA polymerase, to identify putative inhibitors that could facilitate the development of potential anti-coronavirus disease-2019 drug candidates. CONCLUSIONS Computational analyses identified eight compounds inhibiting each target, with binding affinity scores ranging from -4.370 to -2.748 kcal/mol along with their toxicological, ADME, and drug-like properties.
Collapse
Affiliation(s)
- Nizami Duran
- Department of Medical MicrobiologyMedical FacultyMustafa Kemal UniversityAntakyaTurkey
| | - M. Fatih Polat
- Department of Pharmaceutical Basic SciencesFaculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkey
| | - Derya Anil Aktas
- Department of Chemistry and Chemical Process TechnologiesErzurum Vocational High SchoolAtatürk UniversityErzurumTurkey
| | - M. Abdullah Alagoz
- Department of Pharmaceutical ChemistryFaculty of PharmacyInonu UniversityMalatyaTurkey
| | - Emrah Ay
- Department of Medical MicrobiologyMedical FacultyMustafa Kemal UniversityAntakyaTurkey
| | - Funda Cimen
- Department of Medical MicrobiologyMedical FacultyMustafa Kemal UniversityAntakyaTurkey
| | - Erhan Tek
- Department of Medical MicrobiologyMedical FacultyMustafa Kemal UniversityAntakyaTurkey
| | - Baris Anil
- Department of ChemistryFaculty of ScienceAtatürk UniversityErzurumTurkey
| | - Serdar Burmaoglu
- Department of ChemistryFaculty of ScienceAtatürk UniversityErzurumTurkey
| | - Oztekin Algul
- Department of Pharmaceutical ChemistryFaculty of PharmacyMersin UniversityMersinTurkey
- Department of Pharmaceutical ChemistryFaculty of PharmacyErzincan Binali Yildirim UniversityErzincanTurkey
| |
Collapse
|
8
|
Fan L, Luo Z, Yang C, Guo B, Miao J, Chen Y, Tang L, Li Y. Design and synthesis of small molecular 2-aminobenzoxazoles as potential antifungal agents against phytopathogenic fungi. Mol Divers 2021; 26:981-992. [PMID: 33811571 PMCID: PMC8019306 DOI: 10.1007/s11030-021-10213-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/19/2021] [Indexed: 11/30/2022]
Abstract
In order to discover novel antifungal agents, three series of simple 2-aminobenzoxazole derivatives were designed, synthesized and evaluated for their antifungal activities against eight phytopathogenic fungi. The in vitro antifungal results showed that most of the target compounds exhibited excellent and broad-spectrum antifungal activities to all the tested fungi. Particularly, the six compounds 3a, 3b, 3c, 3e, 3m and 3v displayed the most potent antifungal activity, with EC50 value of 1.48–16.6 µg/mL, which were much superior to the positive control hymexazol. The in vivo study further confirmed that compounds 3a, 3c, 3e and 3m displayed good preventative effect against Botrytis cinerea at the concentration of 100 µg/mL. The structure–activity relationships research provides significant reference for the further structural optimization of 2-aminobenzoxazole as potential fungicides.
Collapse
Affiliation(s)
- Lingling Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Zhongfu Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Changfei Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Bing Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Jing Miao
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yang Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| | - Yong Li
- State Key Laboratory of Functions and Applications of Medicinal Plants and College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
9
|
Celik I, Erol M, Kuyucuklu G. Molecular modeling, density functional theory, ADME prediction and antimicrobial activity studies of 2-(substituted)oxazolo[4,5- b]pyridine derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj00701g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular docking, molecular dynamics, DFT, ADME prediction, and antimicrobial activity studies of some 2-(substituted)oxazolo[4,5-b]pyridine derivatives were carried out.
Collapse
Affiliation(s)
- Ismail Celik
- Erciyes University
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- Kayseri
- Turkey
| | - Meryem Erol
- Erciyes University
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- Kayseri
- Turkey
| | - Gulcan Kuyucuklu
- Department of Medical Microbiology
- Faculty of Medicine
- Trakya University
- Edirne
- Turkey
| |
Collapse
|
10
|
Ersan RH, Alagoz MA, Dogen A, Duran N, Burmaoglu S, Algul O. Bisbenzoxazole Derivatives: Design, Synthesis, in Vitro Antimicrobial, Antiproliferative Activity, and Molecular Docking Studies. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ronak Haj Ersan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Mehmet Abdullah Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Aylin Dogen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Nizami Duran
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, Turkey
| | - Serdar Burmaoglu
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|