1
|
Kim S, Lee W, Park H, Kim K. Tumor Microenvironment-Responsive 6-Mercaptopurine-Releasing Injectable Hydrogel for Colon Cancer Treatment. Gels 2023; 9:gels9040319. [PMID: 37102931 PMCID: PMC10138092 DOI: 10.3390/gels9040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023] Open
Abstract
Colon cancer is a significant health concern. The development of effective drug delivery systems is critical for improving treatment outcomes. In this study, we developed a drug delivery system for colon cancer treatment by embedding 6-mercaptopurine (6-MP), an anticancer drug, in a thiolated gelatin/polyethylene glycol diacrylate hydrogel (6MP-GPGel). The 6MP-GPGel continuously released 6-MP, the anticancer drug. The release rate of 6-MP was further accelerated in an acidic or glutathione environment that mimicked a tumor microenvironment. In addition, when pure 6-MP was used for treatment, cancer cells proliferated again from day 5, whereas a continuous supply of 6-MP from the 6MP-GPGel continuously suppressed the survival rate of cancer cells. In conclusion, our study demonstrates that embedding 6-MP in a hydrogel formulation can improve the efficacy of colon cancer treatment and may serve as a promising minimally invasive and localized drug delivery system for future development.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| | - Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| | - Heewon Park
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| |
Collapse
|
2
|
Pallikkara Chandrasekharan S, Lakshmy S, Sanyal G, Kalarikkal N, Trivedi R, Chakraborty B. Metal-decorated γ-graphyne as a drug transporting agent for the mercaptopurine chemotherapy drug: a DFT study. Phys Chem Chem Phys 2023; 25:9461-9471. [PMID: 36930162 DOI: 10.1039/d2cp05379a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In recent years, carbon-based two-dimensional (2D) materials have gained popularity as the carriers of various anticancer therapy drugs, which could reduce the crucial side effects by directly applying the drugs to the intended tumor cells. In this study, through first-principles density functional theory simulations, we have investigated the adsorption properties of a famous cancer chemotherapy drug called mercaptopurine (MC) on a 2D γ-graphyne (GYN) monolayer. Analyzing the geometric and electronic properties, we can summarize that the MC interaction with the pristine GYN is weak, with a small adsorption energy of -0.15 eV, which is too low for potential applications. Therefore, we have decorated the GYN monolayer with biocompatible metals such as Al, Ag, and Cu to trigger the adsorption capacity. The Al- and Cu-decorated GYN offered improved adsorption towards MC compared to the pristine case. The drug release from these metal-decorated systems was examined by creating an acidic environment. In addition, the desorption temperature of the drug from the system was also evaluated using ab initio molecular dynamics simulations. The calculations demonstrated that the Al-decorated GYN is a potential vehicle for MC drug delivery because of the favourable adsorption energy of -0.63 eV, charge transfer of 0.17e and desorption temperature above 270 K. The current research will stimulate the investigation of other low-dimensional carbon materials for drug-delivery applications.
Collapse
Affiliation(s)
| | - Seetha Lakshmy
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560, India.
| | - Gopal Sanyal
- Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560, India. .,School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, India.,School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Ravi Trivedi
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| | - Brahmananda Chakraborty
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India. .,Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
3
|
Singh R, Kumar S. Cancer Targeting and Diagnosis: Recent Trends with Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2283. [PMID: 35808119 PMCID: PMC9268713 DOI: 10.3390/nano12132283] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
Cancer belongs to a category of disorders characterized by uncontrolled cell development with the potential to invade other bodily organs, resulting in an estimated 10 million deaths globally in 2020. With advancements in nanotechnology-based systems, biomedical applications of nanomaterials are attracting increasing interest as prospective vehicles for targeted cancer therapy and enhancing treatment results. In this context, carbon nanotubes (CNTs) have recently garnered a great deal of interest in the field of cancer diagnosis and treatment due to various factors such as biocompatibility, thermodynamic properties, and varied functionalization. In the present review, we will discuss recent advancements regarding CNT contributions to cancer diagnosis and therapy. Various sensing strategies like electrochemical, colorimetric, plasmonic, and immunosensing are discussed in detail. In the next section, therapy techniques like photothermal therapy, photodynamic therapy, drug targeting, gene therapy, and immunotherapy are also explained in-depth. The toxicological aspect of CNTs for biomedical application will also be discussed in order to ensure the safe real-life and clinical use of CNTs.
Collapse
Affiliation(s)
- Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
4
|
Mirsalari H, Maleki A, Raissi H, Soltanabadi A. The assessment of boron nitride nanotubes and functionalized carbon nanotubes as containers for anticancer drug delivery of dacarbazine and effect of urea on adsorption process by molecular dynamics. Struct Chem 2022. [DOI: 10.1007/s11224-022-01900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Qin Y, Xu H, Zhou N, Chen X, Peng Z, Nie C, Tan J, Wu X. The first-principles study of BC 3 nanosheet as the delivery vehicle for 6-mercaptopurine drug. Mol Phys 2022. [DOI: 10.1080/00268976.2021.1992522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yong Qin
- School of Mathematics and Physics, University of South China, Hengyang, People’s Republic of China
| | - Haiting Xu
- School of Mathematics and Physics, University of South China, Hengyang, People’s Republic of China
| | - Nan Zhou
- School of Mathematics and Physics, University of South China, Hengyang, People’s Republic of China
| | - Xuekun Chen
- School of Mathematics and Physics, University of South China, Hengyang, People’s Republic of China
| | - Zhihua Peng
- School of Mathematics and Physics, University of South China, Hengyang, People’s Republic of China
| | - Changming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, People’s Republic of China
| | - Jie Tan
- School of Mathematics and Physics, University of South China, Hengyang, People’s Republic of China
| | - Xijun Wu
- School of Mathematics and Physics, University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
6
|
Bayoumy AB, Crouwel F, Chanda N, Florin THJ, Buiter HJC, Mulder CJJ, de Boer NKH. Advances in Thiopurine Drug Delivery: The Current State-of-the-Art. Eur J Drug Metab Pharmacokinet 2021; 46:743-758. [PMID: 34487330 PMCID: PMC8599251 DOI: 10.1007/s13318-021-00716-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
Thiopurines (mercaptopurine, azathioprine and thioguanine) are well-established maintenance treatments for a wide range of diseases such as leukemia, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE) and other inflammatory and autoimmune diseases in general. Worldwide, millions of patients are treated with thiopurines. The use of thiopurines has been limited because of off-target effects such as myelotoxicity and hepatotoxicity. Therefore, seeking methods to enhance target-based thiopurine-based treatment is relevant, combined with pharmacogenetic testing. Controlled-release formulations for thiopurines have been clinically tested and have shown promising outcomes in inflammatory bowel disease. Latest developments in nano-formulations for thiopurines have shown encouraging pre-clinical results, but further research and development are needed. This review provides an overview of novel drug delivery strategies for thiopurines, reviewing modified release formulations and with a focus on nano-based formulations.
Collapse
Affiliation(s)
- Ahmed B Bayoumy
- Faculty of Medicine, Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Femke Crouwel
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Nripen Chanda
- Micro System Technology Laboratory, CSIR, Central Mechanical Engineering Research Institute, Durgapur, India
| | - Timothy H J Florin
- Inflammatory Bowel Diseases Group, Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Hans J C Buiter
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Chris J J Mulder
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Department of Gastroenterology and Hepatology, AGEM Research Institute, Amsterdam University Medical Center, Location Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Pasban S, Raissi H. Nanotechnology-based approaches for targeting and delivery of drugs via Hexakis (m-PE) macrocycles. Sci Rep 2021; 11:8256. [PMID: 33859230 PMCID: PMC8050045 DOI: 10.1038/s41598-021-87011-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 12/04/2022] Open
Abstract
Hexakis (m-phenylene ethynylene) (m-PE) macrocycles, with aromatic backbones and multiple hydrogen-bonding side chains, had a very high propensity to self-assemble via H-bond and π-π stacking interactions to form nanotubular structures with defined inner pores. Such stacking of rigid macrocycles is leading to novel applications that enable the researchers to explored mass transport in the sub-nanometer scale. Herein, we performed density functional theory (DFT) calculations to examine the drug delivery performance of the hexakis dimer as a novel carrier for doxorubicin (DOX) agent in the chloroform and water solvents. Based on the DFT results, it is found that the adsorption of DOX on the carrier surface is typically physisorption with the adsorption strength values of - 115.14 and - 83.37 kJ/mol in outside and inside complexes, respectively, and so that the essence of the drug remains intact. The negative values of the binding energies for all complexes indicate the stability of the drug molecule inside and outside the carrier's cavities. The energy decomposition analysis (EDA) has also been performed and shown that the dispersion interaction has an essential role in stabilizing the drug-hexakis dimer complexes. To further explore the electronic properties of dox, the partial density of states (PDOS and TDOS) are calculated. The atom in molecules (AIM) and Becke surface (BS) methods are also analyzed to provide an inside view of the nature and strength of the H-bonding interactions in complexes. The obtained results indicate that in all studied complexes, H-bond formation is the driving force in the stabilization of these structures, and also chloroform solvent is more favorable than the water solution. Overall, our findings offer insightful information on the efficient utilization of hexakis dimer as drug delivery systems to deliver anti-cancer drugs.
Collapse
Affiliation(s)
- Samaneh Pasban
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| |
Collapse
|