Gawad SAA, Ghazy R, Mansour S, Ahmed H, Ghazy AR. Photo-Physical Characteristics of Janus Green B in Different Solvents and its Interaction Mechanism with Silver Nanoparticles.
J Fluoresc 2024:10.1007/s10895-024-03723-8. [PMID:
38773030 DOI:
10.1007/s10895-024-03723-8]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/23/2024]
Abstract
This work explores the effects of solvent polarity on Janus Green B (JGB) photophysical properties. The Lippert-Mataga, Billot, and Ravi equations were utilized to calculate the singlet-state excited dipole moments (µe) and ground state dipole moments (µg) using absorption and fluorescence spectra analyses. The results showed an increase in the former, which is suggestive of electronic structural alterations upon excitation. Analysis of fluorescence quantum yield values revealed that JGB's environment had an impact on its emission characteristics; it was particularly sensitive to silver nanoparticles, suggesting possible interactions. While simulations of electron density, electrostatic potential, and energy gap (Eg) helped to understand the electronic structure of JGB, theoretical absorption spectra produced by Time Dependent Density Function Theory (TD-DFT) calculations offered insights into electronic transitions during absorption. To sum up, the present study contributes to our comprehension of the molecular behavior of JGB in various solvents by elucidating the intricate relationship among solvent polarity, molecular environment, and interactions with silver nanoparticles. Additionally, theoretical computations support the interpretation of experimental results.
Collapse