1
|
Cao Q, Mei S, Mehmood A, Sun Y, Chen X. Inhibition of pancreatic lipase by coffee leaves-derived polyphenols: A mechanistic study. Food Chem 2024; 444:138514. [PMID: 38310782 DOI: 10.1016/j.foodchem.2024.138514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The suppression of pancreatic lipase has been employed to mitigate obesity. This study explored the mechanism of coffee leaf extracts to inhibit pancreatic lipase. The ethyl acetate fraction derived from coffee leaves (EAC) exhibited the highest inhibitory capacity with a half-maximal inhibitory concentration (IC50) of 0.469 mg/mL and an inhibitor constant (Ki) of 0.185 mg/mL. This fraction was enriched with 3,5-dicaffeoylquinic acid (3,5-diCQA, 146.50 mg/g), epicatechin (87.51 mg/g), and isoquercetin (48.29 mg/g). EAC inhibited lipase in a reversible and competitive manner, and quenched its intrinsic fluorescence through a static mechanism. Molecular docking revealed that bioactive compounds in EAC bind to key amino acid residues (HIS-263, PHE-77, and SER-152) located within the active cavity of lipase. Catechin derivatives play a key role in the lipase inhibitory activity within EAC. Overall, our findings highlight the promising potential of coffee leaf extract as a functional ingredient for alleviating obesity through inhibition of lipase.
Collapse
Affiliation(s)
- Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China.
| | - Suhuan Mei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Tarahi M, Gharagozlou M, Niakousari M, Hedayati S. Protein-Chlorogenic Acid Interactions: Mechanisms, Characteristics, and Potential Food Applications. Antioxidants (Basel) 2024; 13:777. [PMID: 39061846 PMCID: PMC11273606 DOI: 10.3390/antiox13070777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The interactions between proteins and chlorogenic acid (CGA) have gained significant attention in recent years, not only as a promising approach to modify the structural and techno-functional properties of proteins but also to enhance their bioactive potential in food systems. These interactions can be divided into covalent (chemical or irreversible) and non-covalent (physical or reversible) linkages. Mechanistically, CGA forms covalent bonds with nucleophilic amino acid residues of proteins by alkaline, free radical, and enzymatic approaches, leading to changes in protein structure and functionality, such as solubility, emulsification properties, and antioxidant activity. In addition, the protein-CGA complexes can be obtained by hydrogen bonds, hydrophobic and electrostatic interactions, and van der Waals forces, each offering unique advantages and outcomes. This review highlights the mechanism of these interactions and their importance in modifying the structural, functional, nutritional, and physiological attributes of animal- and plant-based proteins. Moreover, the potential applications of these protein-CGA conjugates/complexes are explored in various food systems, such as beverages, films and coatings, emulsion-based delivery systems, and so on. Overall, this literature review provides an in-depth overview of protein-CGA interactions, offering valuable insights for future research to develop novel protein-based food and non-food products with improved nutritional and functional characteristics.
Collapse
Affiliation(s)
- Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Maryam Gharagozlou
- Center for Organic Farming, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (M.T.); (M.N.)
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
| |
Collapse
|
3
|
Sun Y, Cao Q, Huang Y, Lu T, Ma H, Chen X. Mechanistic study on the inhibition of α-amylase and α-glucosidase using the extract of ultrasound-treated coffee leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:63-74. [PMID: 37515816 DOI: 10.1002/jsfa.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Our previous studies have shown that ultrasound-treated γ-aminobutyric acid (GABA)-rich coffee leaves have higher angiotensin-I-converting enzyme inhibitory activity than their untreated counterpart. However, whether they have antidiabetic activity remains unknown. In this study, we aimed to investigate the inhibitory activities of coffee leaf extracts (CLEs) prepared with ultrasound (CLE-U) or without ultrasound (CLE-NU) pretreatment on α-amylase and α-glucosidase. Subsequently, we evaluated the binding interaction between CLE-U and both enzymes using multi-spectroscopic and in silico analyses. RESULTS Ultrasound pretreatment increased the inhibitory activities of CLE-U against α-amylase and α-glucosidase by 21.78% and 25.13%, respectively. CLE-U reversibly inhibits both enzymes, with competitive inhibition observed for α-amylase and non-competitive inhibition for α-glucosidase. The static quenching of CLE-U against both enzymes was primarily driven by hydrogen bond and van der Waals interactions. The α-helices of α-amylase and α-glucosidase were increased by 1.8% and 21.3%, respectively. Molecular docking results showed that the key differential compounds, including mangiferin, 5-caffeoylquinic acid, rutin, trigonelline, GABA, caffeine, glutamate, and others, present in coffee leaves interacted with specific amino acid residues located at the active site of α-amylase (ASP197, GLU233, and ASP300). The binding of α-glucosidase and these bioactive components involved amino acid residues, such as PHE1289, PRO1329, and GLU1397, located outside the active site. CONCLUSION Ultrasound-treated coffee leaves are potential anti-diabetic substances, capable of preventing diabetes by inhibiting the activities of α-amylase and α-glucosidase, thus delaying starch digestion. Our study provides valuable information to elucidate the possible antidiabetic capacity of coffee leaves through the inhibition of α-amylase and α-glucosidase activities. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
4
|
Xue H, Luo X, Tu Y, Zhao Y, Zhang G. Amelioration of ovalbumin gel properties by EGCG via protein aggregation, hydrogen, and van der Waals force. Food Chem 2023; 422:136248. [PMID: 37126957 DOI: 10.1016/j.foodchem.2023.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The mechanism of epigallocatechin gallate (EGCG)-modified ovalbumin gel (EMOG) was investigated. Results indicated that, with the increase of EGCG concentration from 0% to 0.05%, the opacity, hardness, and cohesiveness of EMOG increased significantly from 0.058 to 0.133, 321.0 g to 377.6 g, and 0.879 to 0.951, respectively, while the soluble protein, surface hydrophobicity, and free sulfhydryl decreased significantly by 41.74%, 28.26%, and 39.36%, respectively. Moreover, EGCG promoted the formation of dense and stable microstructures of EMOG, changed the expansion rate, and improved the stability of EMOG. Moreover, the results of silico simulation showed that EGCG would insert into ovalbumin and interact with the amino acids through van der Waals force and hydrogen bonds, leading to a compact and stable protein structure. In this paper, the mechanism of modification of ovalbumin by EGCG was elucidated at the macro and micro levels, providing insights into the action of polyphenols and proteins.
Collapse
Affiliation(s)
- Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoqiao Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
5
|
Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, Wu Z, Xiao J, Liu L, Liu L. Research advance of non-thermal processing technologies on ovalbumin properties: The gelation, foaming, emulsification, allergenicity, immunoregulation and its delivery system application. Crit Rev Food Sci Nutr 2023; 64:7045-7066. [PMID: 36803106 DOI: 10.1080/10408398.2023.2179969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jianbo Xiao
- Department Analytic & Food Chemistry, Faculty of Science, University of Vigo, Vigo, Spain
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
6
|
Manivel P, Marimuthu P, Yu S, Chen X. Multispectroscopic and Computational Investigations on the Binding Mechanism of Dicaffeoylquinic Acids with Ovalbumin. J Chem Inf Model 2022; 62:6133-6147. [PMID: 36398926 DOI: 10.1021/acs.jcim.2c01011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, studies on the interactions between ovalbumin (OVA) and polyphenols have received a great deal of interest. This study explored the conformational changes and the interaction mechanism of the binding between OVA and chlorogenic acid (CGA) isomers such as 3,4-dicaffeoylquinic acids (3,4-diCQA), 4,5-dicaffeoylquinic acids (4,5-diCQA), and 3,5-dicaffeoylquinic acids (3,5-diCQA) using multispectroscopic and in silico analyses. The emission spectra show that the diCQAs caused strong quenching of OVA fluorescence under different temperatures through a static quenching mechanism with hydrogen bond (H-bond) and van der Waals (vdW) interactions. The values of binding constants (OVA-3,4-diCQA = 6.123 × 105, OVA-3,5-diCQA = 2.485 × 105, OVA-4,5-diCQA = 4.698 × 105 dm3 mol-1 at 298 K) suggested that diCQAs had a strong binding affinity toward OVA, among which OVA-3,4-diCQA exhibits higher binding constant. The results of UV-vis absorption and synchronous fluorescence indicated that the binding of all three diCQAs to OVA induced conformational and micro-environmental changes in the protein. The findings of molecular modeling further validate the significant role of vdW force and H-bond interactions in ensuring the stable binding of OVA-diCQA complexes. Temperature-dependent molecular dynamics simulation studies allow estimation of the individual components that contribute to the total bound free energy value, which allows evaluation of the nature of the interactions involved. This research can provide information for future investigations on food proteins' physicochemical stability and CGA bioavailability in vitro or in vivo.
Collapse
Affiliation(s)
- Perumal Manivel
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China
| | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL─Biochemistry) and Pharmaceutical Science Laboratory (PSL─Pharmacy), Faculty of Science and Engineering, Åbo Akademi University, TurkuFI-20520, Finland
| | - Sun Yu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China.,Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang212013, China
| |
Collapse
|
7
|
Marimuthu P, Gorle S, Karnati KR. Mechanistic Insights into SARS-CoV-2 Main Protease Inhibition Reveals Hotspot Residues. J Chem Inf Model 2021; 61:6053-6065. [PMID: 34842417 DOI: 10.1021/acs.jcim.1c00928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The main protease (Mpro) is a key enzyme responsible for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication that causes the spread of the global pandemic novel coronavirus (nCOVID-19) infection. In the present study, multiple computational approaches such as docking, long-range molecular dynamics (MD) simulations, and binding free-energy (BFE) estimation techniques were employed to investigate the mechanistic basis of the high-affinity inhibitors─GC-376, Calpain XII, and Calpain II (hereafter Calpain as Cal) from the literature─binding to Mpro. Redocking GC-376 and docking Cal XII and Cal II inhibitors to Mpro were able to reproduce all crucial interactions like the X-ray conformation. Subsequently, the apo (ligand-free) and three holo (ligand-bound) complexes were subjected to extensive MD simulations, which revealed that the ligand binding did not alter the overall Mpro structural features, whereas the heatmap analysis showed that the residues located in subsites S1 and S2, the catalytic dyad, and the 45TSEDMLN51 loop in Mpro exhibit a conformational deviation. Moreover, the BFE estimation method was used to elucidate the crucial thermodynamic properties, which revealed that Coulomb, solvation surface accessibility (Solv_SA), and lipophilic components contributed significant energies for complex formation. The decomposition of the total BFE to per-residue showed that H41, H163, M165, Q166, and Q189 residues contributed maximum energies. The overall results from the current investigation might be valuable for designing novel anti-Mpro inhibitors.
Collapse
Affiliation(s)
- Parthiban Marimuthu
- Pharmaceutical Science Laboratory (PSL─Pharmacy) and Structural Bioinformatics Laboratory (SBL─Biochemistry), Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Konda Reddy Karnati
- Department of Natural Sciences, Bowie State University, 14000 Jericho Park Road, Bowie, Maryland 20715-9465, United States
| |
Collapse
|