1
|
Li S, Pan W, Tao C, Hu Z, Cheng B, Chen J, Peng X. Small-Molecule Modulators Targeting Coactivator-Associated Arginine Methyltransferase 1 (CARM1) as Therapeutic Agents for Cancer Treatment: Current Medicinal Chemistry Insights and Emerging Opportunities. J Med Chem 2024. [PMID: 39506904 DOI: 10.1021/acs.jmedchem.4c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Overexpression of coactivator associated arginine methyltransferase 1 (CARM1) is associated with various diseases including cancer. Therefore, CARM1 has emerged as an attractive therapeutic target and a drug response biomarker for anticancer drug discovery. However, the development of conventional CARM1 inhibitors has been hampered by their limited clinical efficacy, acquired resistance, and inability to inhibit nonenzymatic functions of CARM1. To overcome these challenges, new strategies such as isoform-selective inhibitors, dual-acting inhibitors, targeted protein degradation technology (e.g., PROTACs), and even activators, are essential to enhance the anticancer activity of CARM1 modulators. In this perspective, we first summarize the structure and biofunctions of CARM1 and its association with cancer. Next, we focus on the recent advances in CARM1 modulators, including isoform-selective CARM1 inhibitors, dual-target inhibitors, PROTAC degraders, and activators, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for CARM1-based drug discovery.
Collapse
Affiliation(s)
- Shuqing Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Chengpeng Tao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Zhihao Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 516000, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
2
|
Corbeski I, Vargas-Rosales PA, Bedi RK, Deng J, Coelho D, Braud E, Iannazzo L, Li Y, Huang D, Ethève-Quelquejeu M, Cui Q, Caflisch A. The catalytic mechanism of the RNA methyltransferase METTL3. eLife 2024; 12:RP92537. [PMID: 38470714 PMCID: PMC10932547 DOI: 10.7554/elife.92537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on messenger RNA (mRNA) in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a BA representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release, and suggests that the latter step is rate-limiting for METTL3. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.
Collapse
Affiliation(s)
- Ivan Corbeski
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | | | - Rajiv Kumar Bedi
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Jiahua Deng
- Department of Chemistry, Boston UniversityBostonUnited States
| | - Dylan Coelho
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Emmanuelle Braud
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Laura Iannazzo
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Yaozong Li
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Danzhi Huang
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Mélanie Ethève-Quelquejeu
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Qiang Cui
- Department of Chemistry, Boston UniversityBostonUnited States
- Department of Physics, Boston UniversityBostonUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Amedeo Caflisch
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Corbeski I, Vargas-Rosales PA, Bedi RK, Deng J, Coelho D, Braud E, Iannazzo L, Li Y, Huang D, Etheve-Quelquejeu M, Cui Q, Caflisch A. The catalytic mechanism of the RNA methyltransferase METTL3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556513. [PMID: 37732228 PMCID: PMC10508762 DOI: 10.1101/2023.09.06.556513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on mRNA in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a bisubstrate analogue representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release catalysed by METTL3, and suggests that the latter step is rate-limiting. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.
Collapse
|