1
|
Agea MI, Čmelo I, Dehaen W, Chen Y, Kirchmair J, Sedlák D, Bartůněk P, Šícho M, Svozil D. Chemical space exploration with Molpher: Generating and assessing a glucocorticoid receptor ligand library. Mol Inform 2024; 43:e202300316. [PMID: 38979783 DOI: 10.1002/minf.202300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/10/2024]
Abstract
Computational exploration of chemical space is crucial in modern cheminformatics research for accelerating the discovery of new biologically active compounds. In this study, we present a detailed analysis of the chemical library of potential glucocorticoid receptor (GR) ligands generated by the molecular generator, Molpher. To generate the targeted GR library and construct the classification models, structures from the ChEMBL database as well as from the internal IMG library, which was experimentally screened for biological activity in the primary luciferase reporter cell assay, were utilized. The composition of the targeted GR ligand library was compared with a reference library that randomly samples chemical space. A random forest model was used to determine the biological activity of ligands, incorporating its applicability domain using conformal prediction. It was demonstrated that the GR library is significantly enriched with GR ligands compared to the random library. Furthermore, a prospective analysis demonstrated that Molpher successfully designed compounds, which were subsequently experimentally confirmed to be active on the GR. A collection of 34 potential new GR ligands was also identified. Moreover, an important contribution of this study is the establishment of a comprehensive workflow for evaluating computationally generated ligands, particularly those with potential activity against targets that are challenging to dock.
Collapse
Affiliation(s)
- M Isabel Agea
- Department of Informatics and Chemistry & CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Ivan Čmelo
- Department of Informatics and Chemistry & CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Wim Dehaen
- Department of Informatics and Chemistry & CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Ya Chen
- Center for Bioinformatics (ZBH), Department of Informatics, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20146, Hamburg, Germany
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - Johannes Kirchmair
- Center for Bioinformatics (ZBH), Department of Informatics, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20146, Hamburg, Germany
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - David Sedlák
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Petr Bartůněk
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Martin Šícho
- Department of Informatics and Chemistry & CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Daniel Svozil
- Department of Informatics and Chemistry & CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, 16628, Czech Republic
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| |
Collapse
|
2
|
Zare F, Solhjoo A, Sadeghpour H, Sakhteman A, Dehshahri A. Structure-based virtual screening, molecular docking, molecular dynamics simulation and MM/PBSA calculations towards identification of steroidal and non-steroidal selective glucocorticoid receptor modulators. J Biomol Struct Dyn 2023; 41:7640-7650. [PMID: 36134594 DOI: 10.1080/07391102.2022.2123392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Glucocorticoids have been used in the treatment of many diseases including inflammatory and autoimmune diseases. Despite the wide therapeutic effects of synthetic glucocorticoids, the use of these compounds has been limited due to side effects such as osteoporosis, immunodeficiency, and hyperglycaemia. To this end, extensive studies have been performed to discover new glucocorticoid modulators with the aim of increasing affinity for the receptor and thus less side effects. In the present work, structure-based virtual screening was used for the identification of novel potent compounds with glucocorticoid effects. The molecules derived from ZINC database were screened on account of structural similarity with some glucocorticoid agonists as the template. Subsequently, molecular docking was performed on 200 selected compounds to obtain the best steroidal and non-steroidal conformations. Three compounds, namely ZINC_000002083318, ZINC_000253697499 and ZINC_000003845653, were selected with the binding energies of -11.5, -10.5, and -9.5 kcal/mol, respectively. Molecular dynamic simulations on superior structures were accomplished with the glucocorticoid receptor. Additionally, root mean square deviations, root mean square fluctuation, radius of gyration, hydrogen bonds, and binding-free energy analysis showed the binding stability of the proposed compounds compared to budesonide as an approved drug. The results demonstrated that all the compounds had suitable binding stability compared to budesonide, while ZINC_000002083318 showed a tighter binding energy compared to the other compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fateme Zare
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Solhjoo
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|