1
|
Carranza-Aranda AS, Jave-Suárez LF, Flores-Hernández FY, Huizar-López MDR, Herrera-Rodríguez SE, Santerre A. In silico and in vitro study of FLT3 inhibitors and their application in acute myeloid leukemia. Mol Med Rep 2024; 30:229. [PMID: 39392050 PMCID: PMC11475230 DOI: 10.3892/mmr.2024.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most common hematological cancer in the adult population worldwide. Approximately 35% of patients with AML present internal tandem duplication (ITD) mutations in the FMS‑like tyrosine kinase 3 (FLT3) receptor associated with poor prognosis, and thus, this receptor is a relevant target for potential therapeutics. Tyrosine kinase inhibitors (TKIs) are used to treat AML; however, their molecular interactions and effects on leukemic cells are poorly understood. The present study aimed to gain insights into the molecular interactions and affinity forces of four TKI drugs (sorafenib, midostaurin, gilteritinib and quizartinib) with the wild‑type (WT)‑FLT3 and ITD‑mutated (ITD‑FLT3) structural models of FLT3, in its inactive aspartic acid‑phenylalanine‑glycine motif (DFG‑out) and active aspartic acid‑phenylalanine‑glycine motif (DFG‑in) conformations. Furthermore, the present study evaluated the effects of the second‑generation TKIs gilteritinib and quizartinib on cancer cell viability, apoptosis and proliferation in the MV4‑11 (ITD‑FLT3) and HL60 (WT‑FLT3) AML cell lines. Peripheral blood mononuclear cells (PBMCs) from a healthy volunteer were included as an FLT3‑negative group. Molecular docking analysis indicated higher affinities of second‑generation TKIs for WT‑FLT3/DFG‑out and WT‑FLT3/DFG‑in compared with those of the first‑generation TKIs. However, the ITD mutation changed the affinity of all TKIs. The in vitro data supported the in silico predictions: MV4‑11 cells presented high selective sensibility to gilteritinib and quizartinib compared with the HL60 cells, whereas the drugs had no effect on PBMCs. Thus, the current study presented novel information about molecular interactions between the FLT3 receptors (WT or ITD‑mutated) and some of their inhibitors. It also paves the way for the search for novel inhibitory molecules with potential use against AML.
Collapse
Affiliation(s)
- Ahtziri S. Carranza-Aranda
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Flor Y. Flores-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Guadalajara, Jalisco 44270, Mexico
| | - María Del Rosario Huizar-López
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| | - Sara E. Herrera-Rodríguez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Merida, Yucatan 97302, Mexico
| | - Anne Santerre
- Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico
| |
Collapse
|
2
|
Ravi L, Sadhana V, Jain P, Godidhar Raghuram SK, Vaithilingam M, Manjunathan R, Krishnan AK, Kesavan MP. In silico analysis reveals α-amylase inhibitory potential of Taraxerol ( Coccinia indica) and Epoxywithanolide-1 ( Withania coagulans): a possible way to control postprandial hyperglycemia-induced endothelial dysfunction and cardiovascular events. In Silico Pharmacol 2024; 12:82. [PMID: 39262568 PMCID: PMC11383901 DOI: 10.1007/s40203-024-00257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Postprandial hyperglycemia (PPG) exacerbates endothelial dysfunction and impairs vascular function in diabetes as well in healthy people. Though synthetic drugs are available to regulate PPG, the severe gastrointestinal side effects of those medications have prompted the search for alternative treatments. Recently, some phytochemicals captured the attention because of their inhibitory effects on α-amylase to control diabetes. The aim of this study was to investigate and identify potential alpha-amylase inhibitors in C. indica and W. coagulans. This study also aims to understand one of the possible mechanisms of action of plants for their anti-diabetic activity. A total of 36 phytochemical ligands were subjected for protein-ligand docking analysis. Among the phytochemicals, Taraxerol and Epoxywithanolide-I demonstrated significant binding free energy of - 10.2 kcal/mol and - 11.9 kcal/mol respectively, which was higher than the reference acarbose with - 8.6 kcal/mol. These molecules were subjected for molecular dynamics simulation (MDS) analysis with alpha-amylase protein for a duration of 150 ns. Among the three complexes, Taraxerol and Epoxywithanolide-I complexes demonstrates strong potential as inhibitors of the target protein. MDS results were analyzed via root mean square deviation (RMSD), fluctuation of residues, potential energy, radii of gyration and solvent access surface area analysis. Taraxerol demonstrated a significantly low potential energy of - 1,924,605.25 kJ/mol, and Epoxywithanolide-I demonstrated - 1,964,113.3 kJ/mol of potential energy. RMSD plot shows that Epoxywithanolide-I has much higher stability than the other MDS complexes. Drugability and toxicity studies show that the test ligands are demonstrating strong potential as drug like molecules. The results of the study conclude that, Taraxerol of C. indica and Epoxywithanolide-I of W. coagulans are strong inhibitors of alpha-amylase enzyme and that, this is one of the possible mechanisms of action of the plants for their reported anti-diabetic activities. Further in-vitro analysis is in demand to prove the observed results.
Collapse
Affiliation(s)
- Lokesh Ravi
- Department of Food Technology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka 560054 India
| | - Venkatesh Sadhana
- Department of Chemistry, Atria Institute of Technology, Bangalore, Karnataka 560024 India
| | - Pratishtha Jain
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka 560054 India
| | | | | | - Reji Manjunathan
- Multi-Disciplinary Research Unit, Kottayam Government Medical College and Hospital, Kottayam, Kerala India
- Dr. ALM Postgraduate Institute of Basic Medical Science, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113 India
| | - Ajith Kumar Krishnan
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka 560077 India
| | - Mookkandi Palsamy Kesavan
- Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam, Tamil Nadu 625533 India
| |
Collapse
|
3
|
Hou W, Xu XL, Huang LJ, Zhang ZY, Zhou ZN, Wang JY, Ouyang X, Xin SY, Zhang ZY, Xiong Y, Huang H, Lan JX. Bioactivities and Action Mechanisms of Ellipticine Derivatives Reported Prior to 2023. Chem Biodivers 2024; 21:e202400210. [PMID: 38433548 DOI: 10.1002/cbdv.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/05/2024]
Abstract
Currently, natural products are one of the priceless options for finding novel chemical pharmaceutical entities. Ellipticine is a naturally occurring alkaloid isolated from the leaves of Ochrosia elliptica Labill. Ellipticine and its derivatives are characterized by multiple biological activities. The purpose of this review was to provide a critical and systematic assessment of ellipticine and its derivatives as bioactive molecules over the last 60 years. Publications focused mainly on the total synthesis of alkaloids of this type without any evaluation of bioactivity have been excluded. We have reviewed papers dealing with the synthesis, bioactivity evaluation and mechanism of action of ellipticine and its derivatives. It was found that ellipticine and its derivatives showed cytotoxicity, antimicrobial ability, and anti-inflammatory activity, among which cytotoxicity toward cancer cell lines was the most investigated aspect. The inhibition of DNA topoisomerase II was the most relevant mechanism for cytotoxicity. The PI3K/AKT pathway, p53 pathway, and MAPK pathway were also closely related to the antiproliferative ability of these compounds. In addition, the structure-activity relationship was deduced, and future prospects were outlined. We are confident that these findings will lay a scientific foundation for ellipticine-based drug development, especially for anticancer agents.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xin-Liang Xu
- Department of Pharmacy, Xingguo People's Hospital, Xingguo Hospital Affiliated to Gannan Medical University, Ganzhou, 342400, P. R. China
| | - Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhen-Yu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jin-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xi Ouyang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Yi Xiong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, P. R. China
| |
Collapse
|
4
|
Himaja K, Veerapandiyan K, Usha B. Aromatase inhibitors identified from Saraca asoca to treat infertility in women with polycystic ovary syndrome via in silico and in vivo studies. J Biomol Struct Dyn 2024:1-16. [PMID: 38315510 DOI: 10.1080/07391102.2024.2310793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a widely occurring metabolic disorder causing infertility in 70%-80% of the affected women. Saraca asoca, an ancient medicinal herb, has been shown to have therapeutic effects against infertility and hormonal imbalance in women. This study was aimed to identify new aromatase inhibitors from S. asoca as an alternative to the commercially available ones via in silico and in vivo approaches. For this, 10 previously reported flavonoids from S. asoca were chosen and the pharmacodynamic and pharmacokinetic properties were predicted using tools like Autodock Vina, GROMACS, Gaussian and ADMETLab. Of the 10, procyanidin B2 and luteolin showed better interaction with higher binding energy when docked against aromatase (3S79) as compared to the commercial inhibitor letrozole. These two compounds showed higher stability in molecular dynamic simulations performed for 100 ns. Molecular mechanics Poisson-Boltzmann surface analysis indicated that these compounds have binding free energy similar to the commercial inhibitor, highlighting their great affinity for aromatase. Density functional theory analysis revealed that both compounds have a good energy gap, and ADMET prediction exhibited the drug-likeness of the two compounds. A dose-dependent administration of these two compounds on zebrafish revealed that both the compounds, at a lower concentration of 50 µg/ml, significantly reduced the aromatase concentration in the ovarian tissues as compared to the untreated control. Collectively, the in silico and in vivo findings recommend that procyanidin B2 and luteolin could be used as potential aromatase inhibitors for overcoming infertility in PCOS patients with estrogen dominance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kuppachi Himaja
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Kandasamy Veerapandiyan
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Balasundaram Usha
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
5
|
Dinata R, Nisa N, Arati C, Rasmita B, Uditraj C, Siddhartha R, Bhanushree B, Saeed-Ahmed L, Manikandan B, Bidanchi RM, Abinash G, Pori B, Khushboo M, Roy VK, Gurusubramanian G. Repurposing immune boosting and anti-viral efficacy of Parkia bioactive entities as multi-target directed therapeutic approach for SARS-CoV-2: exploration of lead drugs by drug likeness, molecular docking and molecular dynamics simulation methods. J Biomol Struct Dyn 2024; 42:43-81. [PMID: 37021347 DOI: 10.1080/07391102.2023.2192797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
The COVID-19 pandemic has caused adverse health (severe respiratory, enteric and systemic infections) and environmental impacts that have threatened public health and the economy worldwide. Drug repurposing and small molecule multi-target directed herbal medicine therapeutic approaches are the most appropriate exploration strategies for SARS-CoV-2 drug discovery. This study identified potential multi-target-directed Parkia bioactive entities against SARS-CoV-2 receptors (S-protein, ACE2, TMPRSS2, RBD/ACE2, RdRp, MPro, and PLPro) using ADMET, drug-likeness, molecular docking (AutoDock, FireDock and HDOCK), molecular dynamics simulation and MM-PBSA tools. One thousand Parkia bioactive entities were screened out by virtual screening and forty-five bioactive phytomolecules were selected based on favorable binding affinity and acceptable pharmacokinetic and pharmacodynamics properties. The binding affinity values of Parkia phyto-ligands (AutoDock: -6.00--10.40 kcal/mol; FireDock: -31.00--62.02 kcal/mol; and HDOCK: -150.0--294.93 kcal/mol) were observed to be higher than the reference antiviral drugs (AutoDock: -5.90--9.10 kcal/mol; FireDock: -35.64--59.35 kcal/mol; and HDOCK: -132.82--211.87 kcal/mol), suggesting a potent modulatory action of Parkia bioactive entities against the SARS-CoV-2. Didymin, rutin, epigallocatechin gallate, epicatechin-3-0-gallate, hyperin, ursolic acid, lupeol, stigmasta-5,24(28)-diene-3-ol, ellagic acid, apigenin, stigmasterol, and campesterol strongly bound with the multiple targets of the SARS-CoV-2 receptors, inhibiting viral entry, attachment, binding, replication, transcription, maturation, packaging and spread. Furthermore, ACE2, TMPRSS2, and MPro receptors possess significant molecular dynamic properties, including stability, compactness, flexibility and total binding energy. Residues GLU-589, and LEU-95 of ACE2, GLN-350, HIS-186, and ASP-257 of TMPRSS2, and GLU-14, MET-49, and GLN-189 of MPro receptors contributed to the formation of hydrogen bonds and binding interactions, playing vital roles in inhibiting the activity of the receptors. Promising results were achieved by developing multi-targeted antiviral Parkia bioactive entities as lead and prospective candidates under a small molecule strategy against SARS-CoV-2 pathogenesis. The antiviral activity of Parkia bioactive entities needs to be further validated by pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Chettri Arati
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Chetia Uditraj
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | | | | | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Maurya Khushboo
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | |
Collapse
|
6
|
Ko B, Jang Y, Kim MH, Lam TT, Seo HK, Jeong P, Choi M, Kang KW, Lee SD, Park JH, Kim M, Han SY, Kim YC. Discovery of benzimidazole-indazole derivatives as potent FLT3-tyrosine kinase domain mutant kinase inhibitors for acute myeloid leukemia. Eur J Med Chem 2023; 262:115860. [PMID: 37866334 DOI: 10.1016/j.ejmech.2023.115860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The FMS-like tyrosine kinase 3 (FLT3) gene encodes a class III receptor tyrosine kinase that is expressed in hematopoietic stem cells. The mutations of FLT3 gene found in 30% of acute myeloid leukemia (AML), leads to an abnormal constitutive activation of FLT3 kinase of the receptor and results in immature myeloblast cell proliferation. Although small molecule drugs targeting the FLT3 kinase have been approved, new FLT3 inhibitors are needed owing to the side effects and drug resistances arising from kinase domain mutations, such as D835Y and F691L. In this study, we have developed benzimidazole-indazole based novel inhibitors targeting mutant FLT3 kinases through the optimization of diverse chemical moieties substituted around the core skeleton. The most optimized compound 22f exhibited potent inhibitory activities against FLT3 and FLT3/D835Y, with IC50 values of 0.941 and 0.199 nM, respectively. Furthermore, 22f exhibited strong antiproliferative activity against an AML cell line, MV4-11 cells with a GI50 of 0.26 nM. More importantly, 22f showed single-digit nanomolar GI50 values in the mutant FLT kinase expressed Ba/F3 cell lines including FLT-D835Y (GI50 = 0.29 nM) and FLT3-F691L (GI50 = 2.87 nM). Molecular docking studies indicated that the compound exhibits a well-fitted binding mode as a type 1 inhibitor in the homology model of active conformation of FLT3 kinase.
Collapse
Affiliation(s)
- Bongki Ko
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Yongsoo Jang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Min Ha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea
| | - Thai Thi Lam
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea
| | - Hye Kyung Seo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea
| | - Pyeonghwa Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So-Deok Lee
- R&D Center, PeLeMed, Co. Ltd, Seoul, 06100, South Korea
| | - Jin-Hee Park
- R&D Center, PeLeMed, Co. Ltd, Seoul, 06100, South Korea
| | - Myungjin Kim
- R&D Center, PeLeMed, Co. Ltd, Seoul, 06100, South Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea.
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea; Center for AI-Applied High Efficiency Drug Discovery (AHEDD), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea; R&D Center, PeLeMed, Co. Ltd, Seoul, 06100, South Korea.
| |
Collapse
|
7
|
Ravi L, Kumar K A, Kumari G R S, S H, Sam Raj JB, R L, Chinnaiyan P, K C DJ, J K M, Sudhakara D, Dar MS, D M Y, G S. Stearyl palmitate a multi-target inhibitor against breast cancer: in-silico, in-vitro & in-vivo approach. J Biomol Struct Dyn 2023; 42:10057-10074. [PMID: 37691453 DOI: 10.1080/07391102.2023.2255271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Multi-target inhibitors are currently trending in the pharmaceutical research, as they possess increased efficacy and reduced toxicity. In this study multi-target inhibitors for breast cancer are explored from a curated list of natural products, i.e. 4,670 phytochemicals belonging to 360 medicinal plants. In-silico screening of phytochemicals using SeeSAR and AutoDock Vina resulted in identification of Stearyl Palmitate as a potential drug molecule that inhibits three drug targets, i.e. HER-2, MEK-1 and PARP-1 proteins. Molecular Dynamics Simulation for 100 ns each for these three protein-ligand complexes using Desmond, Maestro platform also confirmed the prediction of multi-target inhibition by Stearyl Palmitate. Further in-vitro MTT assay demonstrated that Stearyl Palmitate has a significant IC50 value of 40 µM against MCF-7 cells and >1000 µM against L929 cells. This confirmed that Stearyl Palmitate is having selective cytotoxicity towards breast cancer cells in comparison to non-cancerous cells. Fluorescence staining and flow cytometry analysis confirmed that, Stearyl Palmitate is inducing apoptosis in MCF-7 cells at IC50 concentration. Finally, in-vivo efficacy and toxicity studies were performed using zebrafishes (Danio rerio). It was observed that the fishes treated with IC50 concentration of Stearyl Palmitate demonstrated 2x folds reduction in tumour size, while double dose resulted in 4x folds reduction in tumour size. Stearyl Palmitate did not demonstrate any toxicity or side effects in the zebrafishes. It is concluded that, Stearyl Palmitate, a phytochemical reported to be present in Althea officinalis is a potential anti-breast cancer agent, with ability to inhibit multiple targets such as HER-2, MEK-1 and PARP-2 proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lokesh Ravi
- Department of Food Technology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Ajith Kumar K
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, Karnataka, India
| | - Shree Kumari G R
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Harsha S
- Department of Botany, School of Life Sciences, St Joseph's University, Bengaluru, Karnataka, India
| | - Jabin B Sam Raj
- Department of Botany, School of Life Sciences, St Joseph's University, Bengaluru, Karnataka, India
| | - Likitha R
- Department of Botany, School of Life Sciences, St Joseph's University, Bengaluru, Karnataka, India
| | - Prawin Chinnaiyan
- Department of Botany, School of Life Sciences, St Joseph's University, Bengaluru, Karnataka, India
| | - David Jonnes K C
- Department of Botany, School of Life Sciences, St Joseph's University, Bengaluru, Karnataka, India
| | - Megha J K
- Department of Botany, School of Life Sciences, St Joseph's University, Bengaluru, Karnataka, India
| | - Dhanush Sudhakara
- Department of Botany, School of Life Sciences, St Joseph's University, Bengaluru, Karnataka, India
| | - Musaib Shafi Dar
- Department of Botany, School of Life Sciences, St Joseph's University, Bengaluru, Karnataka, India
| | - Yashaswini D M
- Department of Botany, School of Life Sciences, St Joseph's University, Bengaluru, Karnataka, India
| | - Sathvik G
- Department of Botany, School of Life Sciences, St Joseph's University, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Egbuna C, Patrick‐Iwuanyanwu KC, Onyeike EN, Uche CZ, Ogoke UP, Riaz M, Ibezim EN, Khan J, Adedokun KA, Imodoye SO, Bello IO, Awuchi CG. Wnt/β-catenin signaling pathway inhibitors, glycyrrhizic acid, solanine, polyphyllin I, crocin, hypericin, tubeimoside-1, diosmin, and rutin in medicinal plants have better binding affinities and anticancer properties: Molecular docking and ADMET study. Food Sci Nutr 2023; 11:4155-4169. [PMID: 37457177 PMCID: PMC10345731 DOI: 10.1002/fsn3.3405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 07/18/2023] Open
Abstract
Wnt/β-catenin signaling pathway plays a role in cancer development, organogenesis, and embryogenesis. The abnormal activation promotes cancer stem cell renewal, proliferation, and differentiation. In the present study, molecular docking simulation and ADMET studies were carried out on selected bioactive compounds in search of β-catenin protein inhibitors for drug discovery against cancer. Blind docking simulation was performed using PyRx software on Autodock Vina. β-catenin protein (PDB ID: 1jdh) and 313 bioactive compounds (from PubChem database) with selected standard anticancer drugs were used for molecular docking. The ADMET properties of the best-performing compounds were calculated using SwissADME and pkCMS web servers. The results obtained from the molecular docking study showed that glycyrrhizic acid, solanine, polyphyllin I, crocin, hypericin, tubeimoside-1, diosmin, and rutin had the best binding interactions with β-catenin protein based on their binding affinities. Glycyrrhizic acid and solanine had the same and lowest binding energy of -8.5 kcal/mol. This was followed by polyphyllin I with -8.4 kcal/mol, and crocin, hypericin, and tubeimoside-1 which all had a binding energy of 8.1 kcal/mol. Other top-performing compounds include diosmin and rutin with binding energy of -8.0 kcal/mol. The ADMET study revealed that the following compounds glycyrrhizic acid, solanine, polyphyllin I, crocin, hypericin, tubeimoside-1, diosmin, rutin, and baicalin all violated Lipinski's rule of 5 which implies poor oral bioavailability. However, based on the binding energy score, it was suggested that these pharmacologically active compounds are potential molecules to be tested against cancer.
Collapse
Affiliation(s)
- Chukwuebuka Egbuna
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE‐PUTOR)University of Port‐HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityUliNigeria
| | - Kingsley C. Patrick‐Iwuanyanwu
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE‐PUTOR)University of Port‐HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Eugene N. Onyeike
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE‐PUTOR)University of Port‐HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Chukwuemelie Zedech Uche
- Department of Medical Biochemistry and Molecular Biology, Faculty of Basic Medical SciencesUniversity of NigeriaNsukkaNigeria
| | - Uchenna Petronilla Ogoke
- Biostatistics and Computation Unit, Department of Mathematics and StatisticsUniversity of Port HarcourtPort HarcourtNigeria
| | - Muhammad Riaz
- Department of Allied Health SciencesUniversity of SargodhaSargodhaPakistan
| | - Ebube Nnamdi Ibezim
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityUliNigeria
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl MajmaahSaudi Arabia
- Health and Basic Sciences Research CenterMajmaah UniversityAl MajmaahSaudi Arabia
| | - Kamoru A. Adedokun
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Sikiru O. Imodoye
- Department of Oncological Sciences, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Ibrahim O. Bello
- Department of Biological SciencesSouthern Illinois University EdwardsvilleEdwardsvilleIllinoisUSA
| | | |
Collapse
|
9
|
Andreescu M. Risk of Infections Secondary to the Use of Targeted Therapies in Hematological Malignancies. Life (Basel) 2023; 13:1272. [PMID: 37374055 DOI: 10.3390/life13061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Concurrent infections in hematological malignancies (HM) are major contributors to adverse clinical outcomes, including prolonged hospitalization and reduced life expectancy. Individuals diagnosed with HM are particularly susceptible to infectious pathogens due to immunosuppression, which can either be inherent to the hematological disorder or induced by specific therapeutic strategies. Over the years, the treatment paradigm for HM has witnessed a tremendous shift, from broad-spectrum treatment approaches to more specific targeted therapies. At present, the therapeutic landscape of HM is constantly evolving due to the advent of novel targeted therapies and the enhanced utilization of these agents for treatment purposes. By initiating unique molecular pathways, these agents hinder the proliferation of malignant cells, consequently affecting innate and adaptive immunity, which increases the risk of infectious complications. Due to the complexity of novel targeted therapies and their associated risks of infection, it often becomes a daunting task for physicians to maintain updated knowledge in their clinical practice. The situation is further aggravated by the fact that most of the initial clinical trials on targeted therapies provide inadequate information to determine the associated risk of infection. In such a scenario, a cumulative body of evidence is paramount in guiding clinicians regarding the infectious complications that can arise following targeted therapies. In this review, I summarize the recent knowledge on infectious complications arising in the context of targeted therapies for HM.
Collapse
Affiliation(s)
- Mihaela Andreescu
- Department of Clinical Sciences, Hematology, Faculty of Medicine, Titu Maiorescu University of Bucharest, 040051 Bucharest, Romania
- Department of Hematology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
10
|
Nisa N, Rasmita B, Arati C, Uditraj C, Siddhartha R, Dinata R, Bhanushree B, Bidanchi RM, Manikandan B, Laskar SA, Abinash G, Pori B, Roy VK, Gurusubramanian G. Repurposing of phyto-ligand molecules from the honey bee products for Alzheimer's disease as novel inhibitors of BACE-1: small molecule bioinformatics strategies as amyloid-based therapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51143-51169. [PMID: 36808033 DOI: 10.1007/s11356-023-25943-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 04/16/2023]
Abstract
Alzheimer's disease (AD) is one of the neurodegenerative diseases, manifesting dementia, spatial disorientation, language, cognitive, and functional impairment, mainly affects the elderly population with a growing concern about the financial burden on society. Repurposing can improve the traditional progress of drug design applications and could speed up the identification of innovative remedies for AD. The pursuit of potent anti-BACE-1 drugs for AD treatment has become a pot boiler topic in the recent past and to instigate the design of novel improved inhibitors from the bee products. Drug-likeness characteristics (ADMET: absorption, distribution, metabolism, excretion, and toxicity), docking (AutoDock Vina), simulation (GROMACS), and free energy interaction (MM-PBSA, molecular mechanics Poisson-Boltzmann surface area) analyses were performed to identify the lead candidates from the bee products (500 bioactives from the honey, royal jelly, propolis, bee bread, bee wax, and bee venom) for Alzheimer's disease as novel inhibitors of BACE-1 (beta-site amyloid precursor protein cleaving enzyme (1) receptor using appropriate bioinformatics tools. Forty-four bioactive lead compounds were screened from the bee products through high throughput virtual screening on the basis of their pharmacokinetic and pharmacodynamics characteristics, showing favorable intestinal and oral absorption, bioavailability, blood brain barrier penetration, less skin permeability, and no inhibition of cytochrome P450 inhibitors. The docking score of the forty-four ligand molecules was found to be between -4 and -10.3 kcal/mol, respectively, exhibiting strong binding affinity to BACE1 receptor. The highest binding affinity was observed in the rutin (-10.3 kcal/mol), 3,4-dicaffeoylquinic acid (-9.5 kcal/mol), nemorosone (-9.5 kcal/mol), and luteolin (-8.9 kcal/mol). Furthermore, these compounds demonstrated high total binding energy -73.20 to -105.85 kJ/mol), and low root mean square deviation (0.194-0.202 nm), root mean square fluctuation (0.0985-0.1136 nm), radius of gyration (2.12 nm), number of H-bonds (0.778-5.436), and eigenvector values (2.39-3.54 nm2) in the molecular dynamic simulation, signifying restricted motion of Cα atoms, proper folding and flexibility, and highly stable with compact of the BACE1 receptor with the ligands. Docking and simulation studies concluded that rutin, 3,4-dicaffeoylquinic acid, nemorosone, and luteolin are plausibly used as novel inhibitors of BACE1 to combat AD, but further in-depth experimental investigations are warranted to prove these in silico findings.
Collapse
Affiliation(s)
- Nisekhoto Nisa
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Borgohain Rasmita
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Chettri Arati
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Chetia Uditraj
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Roy Dinata
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Baishya Bhanushree
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Bose Manikandan
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Saeed Ahmed Laskar
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Giri Abinash
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Buragohain Pori
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | |
Collapse
|
11
|
Moualla Y, Moassass F, AL-Halabi B, Al-achkar W, Georgeos M, Yazigi H, Khamis A. Evaluating the clinical significance of FLT3 mutation status in Syrian newly diagnosed acute myeloid leukemia patients with normal karyotype. Heliyon 2022; 8:e11858. [DOI: 10.1016/j.heliyon.2022.e11858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/25/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
|