1
|
Abbas MKG, Rassam A, Karamshahi F, Abunora R, Abouseada M. The Role of AI in Drug Discovery. Chembiochem 2024; 25:e202300816. [PMID: 38735845 DOI: 10.1002/cbic.202300816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The emergence of Artificial Intelligence (AI) in drug discovery marks a pivotal shift in pharmaceutical research, blending sophisticated computational techniques with conventional scientific exploration to break through enduring obstacles. This review paper elucidates the multifaceted applications of AI across various stages of drug development, highlighting significant advancements and methodologies. It delves into AI's instrumental role in drug design, polypharmacology, chemical synthesis, drug repurposing, and the prediction of drug properties such as toxicity, bioactivity, and physicochemical characteristics. Despite AI's promising advancements, the paper also addresses the challenges and limitations encountered in the field, including data quality, generalizability, computational demands, and ethical considerations. By offering a comprehensive overview of AI's role in drug discovery, this paper underscores the technology's potential to significantly enhance drug development, while also acknowledging the hurdles that must be overcome to fully realize its benefits.
Collapse
Affiliation(s)
- M K G Abbas
- Center for Advanced Materials, Qatar University, P.O. Box, 2713, Doha, Qatar
| | - Abrar Rassam
- Secondary Education, Educational Sciences, Qatar University, P.O. Box, 2713, Doha, Qatar
| | - Fatima Karamshahi
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box, 2713, Doha, Qatar
| | - Rehab Abunora
- Faculty of Medicine, General Medicine and Surgery, Helwan University, Cairo, Egypt
| | - Maha Abouseada
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box, 2713, Doha, Qatar
| |
Collapse
|
2
|
El Ati R, Öztaşkın N, Çağan A, Akıncıoğlu A, Demir Y, Göksu S, Touzani R, Gülçin İ. Novel benzene sulfonamides with acetylcholinesterase and carbonic anhydrase inhibitory actions. Arch Pharm (Weinheim) 2024; 357:e2300545. [PMID: 38423951 DOI: 10.1002/ardp.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
A series of benzene sulfonamides 15-26 were synthesized and determined for their in vitro and in silico inhibitory profiles toward acetylcholinesterase (AChE) and carbonic anhydrases (CAs). Commercially available 3,4-dimethoxytoluene was reacted with chlorosulfonic acid to furnish benzene sulfonyl chloride derivatives. The reaction of substituted benzene sulfonyl chloride with some amines also including (±)-α-amino acid methyl esters afforded a series of novel benzene sulfonamides. In this study, the enzyme inhibition abilities of these compounds were evaluated against AChE and CAs. They exhibited a highly potent inhibition ability on AChE and -CAs (Ki values are in the range of 28.11 ± 4.55 nM and 145.52 ± 28.68 nM for AChE, 39.20 ± 2.10 nM to 131.54 ± 12.82 nM for CA I, and 50.96 ± 9.83 nM and 147.94 ± 18.75 nM for CA II). The present newly synthesized novel benzene sulfonamides displayed efficient inhibitory profiles against AChE and CAs, and it is anticipated that they may emerge as lead molecules for some diseases including glaucoma, epilepsy, and Alzheimer's disease.
Collapse
Affiliation(s)
- Rafika El Ati
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed the first, Oujda, Morocco
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Necla Öztaşkın
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Ahmet Çağan
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkiye
| | - Akın Akıncıoğlu
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkiye
- Vocational School, Ağrı İbrahim Çeçen University, Agri, Turkiye
| | - Yeliz Demir
- Department of Pharmacy Services, Ardahan University, Ardahan, Turkiye
| | - Süleyman Göksu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed the first, Oujda, Morocco
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkiye
| |
Collapse
|
3
|
Akıncıoğlu A. Design, synthesis, in silico, and in vitro evaluation of novel benzyloxybenzene substituted (S)-α-amino amide derivatives as cholinesterases and monoaminoxidases inhibitor. Drug Dev Res 2024; 85:e22161. [PMID: 38445811 DOI: 10.1002/ddr.22161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
In this study, a series of novel benzyloxybenzene substituted (S)-α-amino acid methyl esters and their amide derivatives were synthesized and evaluated for their inhibitory actions against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase A (MAO-A), and monoamine oxidase B (MAO-B). The synthetic strategy was based on starting from benzyl bromide (5) and 4-hydroxybenzaldehyde (6). The reaction of 5 and 6 in the presence of K2 CO3 gave benzyloxybenzaldehyde 7. Benzyloxybenzene substituted (S)-α-amino acid methyl esters 11, 12, 13, (±)-19, and (±)-20 were obtained from the reaction of L-amino acid methyl esters with benzyloxybenzaldehyde (7) followed by in situ reduction with NaBH4 . The reaction of (S)-11, (S)-12, 13, (±)-19, and (±)-20 with excess ammonia gave amides (S)-14, (S)-15, 16, (±)-21, and (±)-22. The in vitro inhibitory activities of compounds against MAO-A, MAO-B, AChE, and BChE were investigated. Within the α-amino acid methyl ester series, 13 (21.32 ± 0.338 µM) showed selectivity by inhibiting the MAO-B better than MAO-A. 13 emerged as the most active member of this series, exhibiting a 12-fold selectivity for MAO-B. 14 (4.501 ± 0.295 µM) demonstrated a pronounced selectivity for MAO-A over MAO-B, with a selectivity ratio of 110-fold. In addition, it was determined that compound 15 (95.65 ± 3.09 µM) had high selectivity for BChE inhibition. 21 was demonstrated the most potent inhibition (18.36 ± 1.36 µM) against AChE.
Collapse
Affiliation(s)
- Akın Akıncıoğlu
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
- Vocational School, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
4
|
Naderi A, Akıncıoğlu A, Çağan A, Çelikkaleli H, Akıncıoğlu H, Göksu S. Design, synthesis and anticholinergic properties of novel α-benzyl dopamine, tyramine, and phenethylamine derivatives. Bioorg Chem 2024; 144:107146. [PMID: 38262088 DOI: 10.1016/j.bioorg.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Due to the important biological properties of dopamine, phenethylamine, and tyramine derivatives in the central nervous system, herein the synthesis of novel α-benzyl dopamine, phenethylamine, and tyramine derivatives is described. The title compounds were synthesized starting from 3-phenylpropanoic acids and methoxybenzenes in six or seven steps. Firstly, 3-(2,3-dimethoxyphenyl)propanoic acid (11) and 3-(3,4-dimethoxyphenyl)propanoic acid (12) were selectively brominated with N-bromosuccinimide (NBS). The Friedel-Crafts acylation of methoxylated benzenes with these brominated acids or commercially available 3-phenylpropanoic acid in polyphosphoric acid gave the desired dihydrochalcones. α-Carboxylation of dihydrochalcones, reduction of benzylic carbonyl groups, hydrolysis of esters to acid derivatives, and the Curtius rearrangement reaction of acids followed by in situ synthesis of carbamates from alkyl isocyanates and hydrogenolysis of the carbamates afforded the title compounds in good total yields. Alzheimer's disease (AD) and Parkinson's disease (PD) are chronic neurodegenerative diseases that become serious over time. However, the exact pathophysiology of both diseases has not been revealed yet. There have been many different approaches to the treatment of patients for many years, especially studies on the cholinergic system cover a wide area. Within the scope of this study, the inhibition effects of dopamine-derived carbamates and amine salts on the cholinergic enzymes AChE and BChE were examined. Dopamine-derived carbamate 24a-i showed inhibition in the micro-nanomolar range; compound 24d showed a Ki value of 26.79 nM against AChE and 3.33 nM against BChE, while another molecule, 24i, showed a Ki range of 27.24 nM and 0.92 nM against AChE and BChE, respectively. AChE and BChE were effectively inhibited by dopamine-derived amine salts 25j-s, with Ki values in the range of 17.70 to 468.57 µM and 0.76-211.23 µM, respectively. Additionally, 24c, 24e and 25m were determined to be 60, 276 and 90 times more selective against BChE than AChE, respectively.
Collapse
Affiliation(s)
- Ali Naderi
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkiye
| | - Akın Akıncıoğlu
- Ağrı İbrahim Çeçen University, Central Researching Laboratory, 04100, Ağrı, Turkiye; Vocational School, Ağrı İbrahim Çeçen University, 04100, Ağrı, Turkiye
| | - Ahmet Çağan
- Ağrı İbrahim Çeçen University, Central Researching Laboratory, 04100, Ağrı, Turkiye
| | - Hilal Çelikkaleli
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkiye
| | - Hülya Akıncıoğlu
- Ağrı İbrahim Çeçen University, Faculty of Arts and Science, 04100 Ağrı, Turkiye
| | - Süleyman Göksu
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkiye.
| |
Collapse
|
5
|
Comprehensive Computational Studies of Naturally Occurring Kuguacins as Antidiabetic Agents by Targeting Visfatin. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Marmesin and Marmelosin Interact with the Heparan Sulfatase-2 Active Site: Potential Mechanism for Phytochemicals from Bael Fruit Extract as Antitumor Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9982194. [PMID: 36644581 PMCID: PMC9836799 DOI: 10.1155/2023/9982194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 01/06/2023]
Abstract
Human heparan sulfatase-2 (HSULF-2) is an oncoprotein overexpressed in the surface of all types of tumor cells and its activity plays a critical role in cancer survival and progression. Our previous studies have shown that bael fruit extract, containing marmesin and marmelosin, inhibits the HSULF-2 activity and kills breast tumor cells, but the mechanism of these processes remains fairly known mainly because the HSULF-2's 3D structure is partially known. Herein, we aimed at providing an in silico molecular mechanism of the inhibition of human HSULF-2 by phytochemicals from bael fruit extract. Pharmacokinetic parameters of the main phytochemicals contained in the bael fruit extract, sequence-based 3D structure of human HSULF-2, and the interaction of bael fruit's phytochemicals with the enzyme active site was modeled, evaluated, and verified. Docking studies revealed marmesin and marmelosin as potential inhibitors with binding score -8.5 and -7.7 Kcal/mol; these results were validated using molecular dynamics simulations, which exhibited higher stability of the protein-ligand complexes. Taking together, with our earlier in vitro data, our computational analyses suggest that marmesin and marmelosin interact at the active site of HSULF-2 providing a potential mechanism for its inhibition and consequent antitumor activity by phytochemicals contained in the bael fruit extract.
Collapse
|
7
|
Olawale F, Ogunyemi O, Folorunso IM. Repurposing clinically approved drugs as Wee1 checkpoint kinase inhibitors: an in silico investigation integrating molecular docking, ensemble QSAR modelling and molecular dynamics simulation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Femi Olawale
- Nano-Gene and Drug Delivery Group, Department of Biochemistry, School of life science, University of KwaZulu Natal, Durban, South Africa
| | - Oludare Ogunyemi
- Human Nutraceuticals and Bioinformatics Research Unit, Department of Biochemistry, Salem University, Lokoja, Nigeria
| | - Ibukun Mary Folorunso
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
| |
Collapse
|
8
|
Homology modelling, vHTS, pharmacophore, molecular docking and molecular dynamics studies for the identification of natural compound-derived inhibitor of MRP3 in acute leukaemia treatment. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02128-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|