1
|
Gong X, Liu Q, Han R, Guo Y, Wang G. MIFS: An adaptive multipath information fused self-supervised framework for drug discovery. Neural Netw 2025; 184:107088. [PMID: 39778297 DOI: 10.1016/j.neunet.2024.107088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
The production of expressive molecular representations with scarce labeled data is challenging for AI-driven drug discovery. Mainstream studies often follow a pipeline that pre-trains a specific molecular encoder and then fine-tunes it. However, the significant challenges of these methods are (1) neglecting the propagation of diverse information within molecules and (2) the absence of knowledge and chemical constraints in the pre-training strategy. In this study, we propose an adaptive multipath information fused self-supervised framework (MIFS) that explores molecular representations from large-scale unlabeled data to aid drug discovery. In MIFS, we innovatively design a dedicated molecular graph encoder called Mol-EN, which implements three pathways of information propagation: atom-to-atom, chemical bond-to-atom, and group-to-atom, to comprehensively perceive and capture abundant semantic information. Furthermore, a novel adaptive pre-training strategy based on molecular scaffolds is devised to pre-train Mol-EN on 11 million unlabeled molecules. It optimizes Mol-EN by constructing a topological contrastive loss to provide additional chemical insights into molecular structures. Subsequently, the pre-trained Mol-EN is fine-tuned on 14 widespread drug discovery benchmark datasets, including molecular properties prediction, drug-target interactions, and drug-drug interactions. Notably, to further enhance chemical knowledge, we introduce an elemental knowledge graph (ElementKG) in the fine-tuning phase. Extensive experiments show that MIFS achieves competitive performance while providing plausible explanations for predictions from a chemical perspective.
Collapse
Affiliation(s)
- Xu Gong
- Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Qun Liu
- Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Rui Han
- Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Yike Guo
- Department of Computer Science and Engineering, The Hong Kong University of Science and Engineering, 999077, Hong Kong, China.
| | - Guoyin Wang
- Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; College of Computer and Information Science, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
2
|
Yevale D, Teraiya N, Lalwani T, Dalasaniya M, Patel SK, Dixit N, Sangani CB, Kumar S, Mulukuri NVLS, Huang T, Duan YT, Zhang J. Discovery of new pyrazole-4-carboxamide analogues as potential anticancer agents targeting dual aurora kinase A and B. Eur J Med Chem 2024; 280:116917. [PMID: 39388904 DOI: 10.1016/j.ejmech.2024.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
Aurora kinases A and B are critical regulators of cell division and cytokinesis. Abnormal expression of Aurora kinases A and B causes chromosomal instability and disrupts several tumor suppressor and oncoprotein-controlled pathways. As a result, there has been a spike in interest in developing inhibitors against these kinases as anticancer treatments. This paper addresses the discovery, anticancer evaluation and druggability study of new pyrazole-4-carboxamide analogues as kinases inhibitors. Among the compounds, 6k demonstrated the highest cytotoxicity against HeLa and HepG2 cells, with IC50 of 0.43 μM and 0.67 μM, respectively. It selectively inhibited Aurora kinases A and B, with IC50 values of 16.3 nM and 20.2 nM, respectively, in comparison to other kinases. Molecular investigations revealed that 6k induced the inhibition of phosphorylated Thr288 (Aurora kinase A) and phosphorylated Histone H3 (Aurora kinase B), confirming its mechanism of action. Beside, compound 6k arrested the cell cycle at the G2/M phase by modulating cyclinB1 and cdc2 protein levels and increasing the Sub-G1 cell population. It also significantly increased polyploidization (>8 N) and abnormal mitosis, likely due to Aurora kinase inhibition. Furthermore, 6k boosted apoptosis through the intrinsic route, with elevated levels of p53, Bak, Bax, cleaved caspase-3, and cleaved PARP. Moreover, docking and MD simulations validated kinase inhibition-induced anticancer effects. Additionally, 6k satisfied drug-likeness parameters and remained stable in the in vitro metabolism. These findings indicate that 6k warrants further in vivo pharmacokinetic and pharmacodynamics investigations.
Collapse
Affiliation(s)
- Digambar Yevale
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China; Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat, 382016, India
| | - Nishith Teraiya
- Department of Pharmaceutical Chemistry, K B Institute of Pharmaceutical Education and Research, Kadi Sarva Vishvavidhyalay, Gandhinagar, Gujarat, 382023, India
| | - Twinkle Lalwani
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka- Sanand, Ahmedabad, Gujarat, 382213, India
| | - Mayur Dalasaniya
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka- Sanand, Ahmedabad, Gujarat, 382213, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nandan Dixit
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Chetan B Sangani
- Department of Chemistry, Government Science College, Sector-15, Gandhinagar, Gujarat University, Gujarat, 382016, India.
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry and Pharmacognosy, Nitte College of Pharmaceutical Sciences, Bangalore, Karnataka, 560064, India
| | - N V L Sirisha Mulukuri
- Department of Pharmaceutical Chemistry and Pharmacognosy, Nitte College of Pharmaceutical Sciences, Bangalore, Karnataka, 560064, India
| | - Tao Huang
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Jie Zhang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
3
|
Chen M, Zhu H, Li J, Luo D, Zhang J, Liu W, Wang J. Research progress on the relationship between AURKA and tumorigenesis: the neglected nuclear function of AURKA. Ann Med 2024; 56:2282184. [PMID: 38738386 PMCID: PMC11095293 DOI: 10.1080/07853890.2023.2282184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/31/2023] [Indexed: 05/14/2024] Open
Abstract
AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.
Collapse
Affiliation(s)
- Menghua Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huijun Zhu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danjing Luo
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiaming Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jue Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Eni DB, Cassel J, Namba-Nzanguim CT, Simoben CV, Tietjen I, Akunuri R, Salvino JM, Ntie-Kang F. Design, synthesis, and biochemical and computational screening of novel oxindole derivatives as inhibitors of Aurora A kinase and SARS-CoV-2 spike/host ACE2 interaction. Med Chem Res 2024; 33:620-634. [PMID: 38646411 PMCID: PMC11024012 DOI: 10.1007/s00044-024-03201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/09/2024] [Indexed: 04/23/2024]
Abstract
Isatin (indol-2,3-dione), a secondary metabolite of tryptophan, has been used as the core structure to design several compounds that have been tested and identified as potent inhibitors of apoptosis, potential antitumor agents, anticonvulsants, and antiviral agents. In this work, several analogs of isatin hybrids have been synthesized and characterized, and their activities were established as inhibitors of both Aurora A kinase and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike/host angiotensin-converting enzyme II (ACE2) interactions. Amongst the synthesized isatin hybrids, compounds 6a, 6f, 6g, and 6m exhibited Aurora A kinase inhibitory activities (with IC50 values < 5 μ M), with GScore values of -7.9, -7.6, -8.2 and -7.7 kcal/mol, respectively. Compounds 6g and 6i showed activities in blocking SARS-CoV-2 spike/ACE2 binding (with IC50 values in the range < 30 μ M), with GScore values of -6.4 and -6.6 kcal/mol, respectively. Compounds 6f, 6g, and 6i were both capable of inhibiting spike/ACE2 binding and blocking Aurora A kinase. Pharmacophore profiling indicated that compound 6g tightly fits Aurora A kinase and SARS-CoV-2 pharmacophores, while 6d fits SARS-CoV-2 and 6l fits Aurora A kinase pharmacophore. This work is a proof of concept that some existing cancer drugs may possess antiviral properties. Molecular modeling showed that the active compound for each protein adopted different binding modes, hence interacting with a different set of amino acid residues in the binding site. The weaker activities against spike/ACE2 could be explained by the small sizes of the ligands that fail to address the important interactions for binding to the ACE2 receptor site.
Collapse
Affiliation(s)
- Donatus B. Eni
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Cyril T. Namba-Nzanguim
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Conrad V. Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
| | | | | | | | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Homology Modeling, Molecular Docking, Molecular Dynamic Simulation, and Drug-Likeness of the Modified Alpha-Mangostin against the β-Tubulin Protein of Acanthamoeba Keratitis. Molecules 2022; 27:molecules27196338. [PMID: 36234875 PMCID: PMC9572066 DOI: 10.3390/molecules27196338] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT–new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0–3 and 0–2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0–4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.
Collapse
|
6
|
Prasetyo WE, Purnomo H, Sadrini M, Wibowo FR, Firdaus M, Kusumaningsih T. Identification of potential bioactive natural compounds from Indonesian medicinal plants against 3-chymotrypsin-like protease (3CL pro) of SARS-CoV-2: molecular docking, ADME/T, molecular dynamic simulations, and DFT analysis. J Biomol Struct Dyn 2022:1-18. [DOI: 10.1080/07391102.2022.2068071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wahyu Eko Prasetyo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Heri Purnomo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Miracle Sadrini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Fajar Rakhman Wibowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Triana Kusumaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| |
Collapse
|