1
|
Borcan F, Vlase T, Vlase G, Popescu R, Soica CM. The Influence of an Isocyanate Structure on a Polyurethane Delivery System for 2'-Deoxycytidine-5'-monophosphate. J Funct Biomater 2023; 14:526. [PMID: 37888191 PMCID: PMC10607123 DOI: 10.3390/jfb14100526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The delivery of nucleosides represents an interesting research trend in recent years due to their application in various viral infections. The main aims of this study were to develop and to characterize polyurethane particles that are intended to be used for the transport of nucleosides. Three samples have been prepared using aliphatic diisocyanates, a mixture of polyethylene glycol, polycaprolactone, and diols, respectively. The samples were characterized through refractivity measurements, drug loading efficacy, release and penetration rate investigations, FTIR and Raman spectroscopy, thermal analyses, Zetasizer, SEM, HDFa cells viability, and irritation tests on mice skin. The results indicate the obtaining of particles with sizes between 132 and 190 nm, positive Zeta potential values (28.3-31.5 mV), and a refractivity index around 1.60. A good thermal stability was found, and SEM images show a medium tendency to agglomerate. The samples' color, pH, and electrical conductivity have changed only to a small extent over time, and the evaluations indicate an almost 70% encapsulation efficacy, a prolonged release, and that around 70% of particles have penetrated an artificial membrane in the first 24 h. The synthesized products should be tested in further clinical trials, and the current tests on cell cultures and mice skin revealed no side effects.
Collapse
Affiliation(s)
- Florin Borcan
- Department I, Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timisoara, Romania
| | - Titus Vlase
- Research Center “Thermal Analysis in Environmental Problems”, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi Str., 300115 Timisoara, Romania; (T.V.); (G.V.)
| | - Gabriela Vlase
- Research Center “Thermal Analysis in Environmental Problems”, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi Str., 300115 Timisoara, Romania; (T.V.); (G.V.)
| | - Roxana Popescu
- Department II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 14A T. Vladimirescu Str., 300041 Timisoara, Romania;
| | - Codruta M. Soica
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
2
|
Broni E, Ashley C, Velazquez M, Khan S, Striegel A, Sakyi PO, Peracha S, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Miller WA. In Silico Discovery of Potential Inhibitors Targeting the RNA Binding Loop of ADAR2 and 5-HT2CR from Traditional Chinese Natural Compounds. Int J Mol Sci 2023; 24:12612. [PMID: 37628792 PMCID: PMC10454645 DOI: 10.3390/ijms241612612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Adenosine deaminase acting on RNA 2 (ADAR2) is an important enzyme involved in RNA editing processes, particularly in the conversion of adenosine to inosine in RNA molecules. Dysregulation of ADAR2 activity has been implicated in various diseases, including neurological disorders (including schizophrenia), inflammatory disorders, viral infections, and cancers. Therefore, targeting ADAR2 with small molecules presents a promising therapeutic strategy for modulating RNA editing and potentially treating associated pathologies. However, there are limited compounds that effectively inhibit ADAR2 reactions. This study therefore employed computational approaches to virtually screen natural compounds from the traditional Chinese medicine (TCM) library. The shortlisted compounds demonstrated a stronger binding affinity to the ADAR2 (<-9.5 kcal/mol) than the known inhibitor, 8-azanebularine (-6.8 kcal/mol). The topmost compounds were also observed to possess high binding affinity towards 5-HT2CR with binding energies ranging from -7.8 to -12.9 kcal/mol. Further subjecting the top ADAR2-ligand complexes to molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations revealed that five potential hit compounds comprising ZINC000014637370, ZINC000085593577, ZINC000042890265, ZINC000039183320, and ZINC000101100339 had favorable binding free energies of -174.911, -137.369, -117.236, -67.023, and -64.913 kJ/mol, respectively, with the human ADAR2 protein. Residues Lys350, Cys377, Glu396, Cys451, Arg455, Ser486, Gln488, and Arg510 were also predicted to be crucial in ligand recognition and binding. This finding will provide valuable insights into the molecular interactions between ADAR2 and small molecules, aiding in the design of future ADAR2 inhibitors with potential therapeutic applications. The potential lead compounds were also profiled to have insignificant toxicities. A structural similarity search via DrugBank revealed that ZINC000039183320 and ZINC000014637370 were similar to naringin and naringenin, which are known adenosine deaminase (ADA) inhibitors. These potential novel ADAR2 inhibitors identified herein may be beneficial in treating several neurological disorders, cancers, viral infections, and inflammatory disorders caused by ADAR2 after experimental validation.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|