1
|
Herlina T, Akili AWR, Nishinarizki V, Hardianto A, Sulaeman AP, Gaffar S, Julaeha E, Mayanti T, Supratman U, Nafiah MA, Latip JB. Cytotoxic Evaluation, Molecular Docking, Molecular Dynamics, and ADMET Prediction of Isolupalbigenin Isolated from Erythrina subumbrans (Hassk). Merr. (Fabaceae) Stem Bark: Unveiling Its Anticancer Efficacy. Onco Targets Ther 2024; 17:829-840. [PMID: 39435351 PMCID: PMC11492916 DOI: 10.2147/ott.s482469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Erythrina subumbrans, a medical plant found in sub-Saharan Africa and the Western Ghats of India, shows promise as a potential source of bioactive compounds to treat cancer. In our ongoing research on folk medical plants, we report the isolation of flavonoid compound from the stem bark of E. subumbrans along with its cytotoxic activity against breast cancer (MCF-7 and T47D), and cervical cancer (HeLa) cell lines. Purpose This study aimed to isolate secondary metabolite from the stem bark of E. subumbrans and evaluate its cytotoxic activity to support the use of folk medicinal plants as alternative therapy against cancer. Methods Isolupalbigenin was isolated from the stem bark of E. subumbrans by column chromatography. Cytotoxic activity against breast cancer (MCF-7 and T47D) and cervical cancer (HeLa) cell lines was evaluated using the MTT assay, whereas the in silico study was evaluated using molecular docking and molecular dynamics against estrogen receptor alpha (ERα). Results The cytotoxic assay showed that isolupalbigenin inhibited the growth of MCF-7 cell with an IC50 of 31.62 µg∙mL-1, while showing no toxicity against normal human cells (Vero cell line). The molecular docking results suggested that isolupalbigenin can bind to ERα with a lower binding affinity than estradiol, whereas the stability of the isolupalbigenin-ERα complex was confirmed by molecular dynamic simulation with a median Root Mean Square Deviation (RMSD) of 2.80 Å. Toxicity prediction suggested that isolupalbigenin was less likely to cause hepatotoxicity or carcinogenicity, whereas pharmacokinetic prediction suggested that isolupalbigenin has high intestinal absorption with medium Caco2 permeability. In addition, isolupalbigenin was predicted to have a medium volume of distribution (Vd). Conclusion Isolupalbigenin isolated from the stem bark of E. subumbrans with cytotoxic activity supports further development of plants from the genus Erythrina as a medicinal plant for alternative therapy against cancer.
Collapse
Affiliation(s)
- Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Abd Wahid Rizaldi Akili
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Vicki Nishinarizki
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Allyn Pramudya Sulaeman
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Mohd Azlan Nafiah
- Department of Chemistry, Faculty of Science and Mathematics, Sultan Idris Education University, Tanjong Malim, Perak, 35900, Malaysia
| | - Jalifah Binti Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 46300, Malaysia
| |
Collapse
|
2
|
Moharana M, Maharana PC, Pattanayak SK, Khan F. Effect of temperature on hepatitis a virus and exploration of binding mode mechanism of phytochemicals from tinospora cordifolia: an insight into molecular docking, MM/GBSA, and molecular dynamics simulation study. J Biomol Struct Dyn 2024; 42:598-614. [PMID: 36995189 DOI: 10.1080/07391102.2023.2194429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
The hepatitis A virus (HAV), which causes hepatitis A, is a contagious liver ailment. The infections are not specifically treated by any medications. Therefore, the development of less harmful, more effective and cost-effective antiviral agents are necessary. The present work highlighted the in-silico activity of phytocompounds from tinospora cordifolia against HAV. The binding interaction of HAV with the phytocompounds was analyzed through molecular docking. Molecular docking revealed that chasmanthin, malabarolide, menispermacide, tinosporaside, and tinosporinone compounds bind with HAV more efficiently than other compounds. Further evaluation using 100 ns molecular dynamics simulation, MM/GBSA and free energy landscape indicated that all phytocompounds studied here were found to be most promising drug candidate against hepatitis A virus. Our computational study will encourage promoting in further investigation for in vitro and in vivo clinical trials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
3
|
Onyenaka C, Idowu KA, Ha NP, Graviss EA, Olaleye OA. Anti-Tuberculosis Potential of OJT008 against Active and Multi-Drug-Resistant Mycobacterium Tuberculosis: In Silico and In Vitro Inhibition of Methionine Aminopeptidase. Int J Mol Sci 2023; 24:17142. [PMID: 38138972 PMCID: PMC10742973 DOI: 10.3390/ijms242417142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Despite the recent progress in the diagnosis of tuberculosis (TB), the chemotherapeutic management of TB continues to be challenging. Mycobacterium tuberculosis (Mtb), the etiological agent of TB, is classified as the 13th leading cause of death globally. In addition, 450,000 people were reported to develop multi-drug-resistant TB globally. The current project focuses on targeting methionine aminopeptidase (MetAP), an essential protein for the viability of Mtb. MetAP is a metalloprotease that catalyzes the excision of the N-terminal methionine (NME) during protein synthesis, allowing the enzyme to be an auspicious target for the development of novel therapeutic agents for the treatment of TB. Mtb possesses two MetAP1 isoforms, MtMetAP1a and MtMetAP1c, which are vital for Mtb viability and, hence, a promising chemotherapeutic target for Mtb therapy. In this study, we cloned and overexpressed recombinant MtMetAP1c. We investigated the in vitro inhibitory effect of the novel MetAP inhibitor, OJT008, on the cobalt ion- and nickel ion-activated MtMetAP1c, and the mechanism of action was elucidated through an in silico approach. The compound's potency against replicating and multi-drug-resistant (MDR) Mtb strains was also investigated. The induction of the overexpressed recombinant MtMetAP1c was optimized at 8 h with a final concentration of 1 mM Isopropyl β-D-1-thiogalactopyranoside. The average yield from 1 L of Escherichia coli culture for MtMetAP1c was 4.65 mg. A preliminary MtMetAP1c metal dependency screen showed optimum activation with nickel and cobalt ions occurred at 100 µM. The half-maximal inhibitory concentration (IC50) values of OJT008 against MtMetAP1c activated with CoCl2 and NiCl2 were 11 µM and 40 µM, respectively. The in silico study showed OJT008 strongly binds to both metal-activated MtMetAP1c, as evidenced by strong molecular interactions and a higher binding score, thereby corroborating our result. This in silico study validated the pharmacophore's metal specificity. The potency of OJT008 against both active and MDR Mtb was <0.063 µg/mL. Our study reports OJT008 as an inhibitor of MtMetAP1c, which is potent at low micromolar concentrations against both active susceptible and MDR Mtb. These results suggest OJT008 is a potential lead compound for the development of novel small molecules for the therapeutic management of TB.
Collapse
Affiliation(s)
- Collins Onyenaka
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA (K.A.I.)
| | - Kehinde A. Idowu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA (K.A.I.)
| | - Ngan P. Ha
- Center for Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Edward A. Graviss
- Center for Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Omonike A. Olaleye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA (K.A.I.)
- Center for Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
4
|
Zargar S, Altwaijry N, Wani TA, Alkahtani HM. Evaluation of the Possible Pathways Involved in the Protective Effects of Quercetin, Naringenin, and Rutin at the Gene, Protein and miRNA Levels Using In-Silico Multidimensional Data Analysis. Molecules 2023; 28:4904. [PMID: 37446564 DOI: 10.3390/molecules28134904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Flavonoids are secondary metabolites that are non-essential for plant growth or survival, and they also provide numerous health benefits to humans. They are antioxidants that shield plants from the ill effects of ultraviolet light, pests, and diseases. They are beneficial to health for several reasons, including lowering inflammation, boosting cardiovascular health, and lowering cancer risk. This study looked into the physicochemical features of these substances to determine the potential pharmacological pathways involved in their protective actions. Potential targets responsible for the protective effects of quercetin, naringenin, and rutin were identified with SwissADME. The associated biological processes and protein-protein networks were analyzed by using the GeneMANIA, Metascape, and STRING servers. All the flavonoids were predicted to be orally bioavailable, with more than 90% targets as enzymes, including kinases and lyases, and with common targets such as NOS2, CASP3, CASP9, CAT, BCL2, TNF, and HMOX1. TNF was shown to be a major target in over 250 interactions. To extract the "biological meanings" from the MCODE networks' constituent parts, a GO enrichment analysis was performed on each one. The most important transcription factors in gene regulation were RELA, NFKB1, PPARG, and SP1. Treatment with quercetin, naringenin, or rutin increased the expression and interaction of the microRNAs' hsa-miR-34a-5p, hsa-miR-30b-5p, hsa-let-7a-5p, and hsa-miR-26a-1-3p. The anticancer effects of hsa-miR-34a-5p have been experimentally confirmed. It also plays a critical role in controlling other cancer-related processes such as cell proliferation, apoptosis, EMT, and metastasis. This study's findings might lead to a deeper comprehension of the mechanisms responsible for flavonoids' protective effects and could present new avenues for exploration.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Matore BW, Roy PP, Singh J. Discovery of novel VEGFR2-TK inhibitors by phthalimide pharmacophore based virtual screening, molecular docking, MD simulation and DFT. J Biomol Struct Dyn 2023; 41:13056-13077. [PMID: 36775656 DOI: 10.1080/07391102.2023.2178510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/12/2023] [Indexed: 02/14/2023]
Abstract
Currently, numerous potent chemotherapeutic agents are available in the market but most of them show poor pharmacokinetics, lethal effects and drug resistance during their enduring use. The increased cancer cases, deaths and need of better treatment stimulates us to give newer lifesaving anticancer drugs. The phthalimide derivatives are structurally diverse and exert potential anticancer activity. In this regard, the 3D QSAR Pharmacophore model was developed and validated using fifty-eight phthalimide derivatives. The validation parameters corroborated the reliability and statistical robustness of CEASER Hypo 1. Three databases-NCI Open, Drug Bank, and Asinex were submitted to ADMET and drug-like filtering; 117893 drug-like compounds were mapped on CEASER Hypo 1; and 362 hits with IC50 <1 µM were discovered. These hits were docked on VEGFR2-TK, and in the form of results fifteen hits exhibited greater affinity than sorafenib. The top lead ASN 03206926 was subjected for MD simulation (100 ns) and RMSD, Rg, RMSF, number of hydrogen bonds, and SASA verified that the complex was stable, rigid and highly compact. Results demonstrated GLU885, PHE918, CYS919, LYS920, HIS1026, CYS1045, ASP1046 are the essential residues for favourable interactions. The binding free energy calculations support the affinity and stability revealed by docking and MD simulation. The DFT calculations, negative binding energy and lower HOMO-LUMO band gap revealed that the process is spontaneous and ASN 03206926 is very reactive. Following extensive analysis we suggest that the ASN 03206926 might be employed as a new VEGFR2-TK inhibitor for the treatment of breast and VEGFR2-TK associated cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
6
|
Idowu KA, Onyenaka C, Olaleye OA. A computational evaluation of structural stability of omicron and delta mutations of SARS-CoV-2 spike proteins and human ACE-2 interactions. INFORMATICS IN MEDICINE UNLOCKED 2022; 33:101074. [PMID: 36092780 PMCID: PMC9450468 DOI: 10.1016/j.imu.2022.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Several more infectious SARS-CoV-2 variants have emerged globally since SARS-CoV-2 pandemic and the discovery of the first D614G variant of SARS-CoV-2 spike proteins in 2020. Delta (B.1.617.2) and Omicron (B.1.1.529) variants have proven to be of major concern out of all the reported variants, considering their influence on the virus' transmissibility and severity. This study aimed at evaluating the impact of mutations on these two variants on stability and molecular interactions between the viral Spike protein and human angiotensin converting enzyme-2 (hACE-2). The spike proteins receptor binding domain (RBD) was docked with the hACE-2 using HADDOCK servers. To understand and establish the effects of the mutations on the structural stability and flexibility of the RBD-hACE-2 complex, molecular dynamic (MD) simulation of the docked complex was performed and evaluated. The findings from both molecular docking analysis and binding free energy showed that the Omicron (OM) variant has high receptiveness towards hACE-2 versus Delta variant (DT), thereby, responsible for its increase in transmission. The structural stability and flexibility evaluation of variants' systems showed that mutations on DT and OM variants disturbed the stability of either the spike protein or the RBD-hACE-2 complex, with DT variant having greater instability impact. This study, therefore, assumed this obvious instability observed in DT variant might be associated or responsible for the reported severity in DT variant disease over the OM variant disease. This study provides molecular insight into the effects of OM and DT variants on stability and interactions between SARS-CoV-2 protein and hACE-2.
Collapse
Affiliation(s)
- Kehinde A Idowu
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX, 77004, USA
| | - Collins Onyenaka
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX, 77004, USA
| | - Omonike A Olaleye
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, TX, 77004, USA
| |
Collapse
|