1
|
Mohamed MAF, Benjamin I, Okon GA, Ahmad I, Khan SAPM, Patel H, Agwamba EC, Louis H. Insights into in-vitro studies and molecular modelling of the antimicrobial efficiency of 4-chlorobenzaldehyde and 4-methoxybenzaldehyde derivatives. J Biomol Struct Dyn 2024; 42:6042-6064. [PMID: 37504959 DOI: 10.1080/07391102.2023.2239917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Owing to the significant gap in the knowledge and understanding of the mechanisms of antimicrobial action and the development of resistance, the optimization of antimicrobial therapies therefore becomes a necessity. It is on this note, that this study seeks to both experimentally and theoretically investigate the antimicrobial efficiency of two synthesized compounds namely; 1-((4-methoxyphenyl) (morpholino)methyl)thiourea (MR1) and diethyl 4-(4-chlorophenyl)-2,6-diphenyl-1,4-dihydropyridine-3,5-dicarboxylate (HRC). Utilizing the density functional theory (DFT), the compounds were optimized at ωB97XD/6-31++G(2d, 2p) level of theory. This provided a clear explanation for their distinct reactivity and stability potentials. More so, the natural bond orbital (NBO) analysis confirmed strong intra and intermolecular interactions, which agreed with the calculated reactivity parameters and density of states (DOS). Upon assessing the antimicrobial efficacy of the synthesized compounds, it was found that they exhibited lower activity against Enterobacter and A. niger, but considerable activity against Moraxella. In contrast, they showed higher activity against B. subtilis and Trichophyton, indicating that the compounds are more effective against gram-positive bacteria than gram-negative ones. Hence, it can be asserted that the synthesized compounds have superior antifungal action than antibacterial activity. A fascinating aspect of the data is that they show interactions that are incredibly insightful, totally correlating with the simulations of both molecular docking and molecular dynamics. Therefore, the alignment between experimental findings and computational simulations strengthens the validity of the study's conclusions, emphasizing the significance of the synthesized compounds in the context of optimizing antimicrobial therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mashood A F Mohamed
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Gideon A Okon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
| | - Syed A P M Khan
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
2
|
El Bakri Y, Karthikeyan S, Lai CH, Bakhite EA, Ahmad I, Abdel-Rahman AE, Abuelhassan S, Marae IS, Mohamed SK, Mague JT. New tetrahydroisoquinoline-4-carbonitrile derivatives as potent agents against cyclin-dependent kinases, crystal structures, and computational studies. J Biomol Struct Dyn 2024; 42:5053-5071. [PMID: 38764131 DOI: 10.1080/07391102.2023.2224899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/07/2023] [Indexed: 05/21/2024]
Abstract
The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russia
| | - Subramani Karthikeyan
- Division of Physics, school of advanced science, Vellore Institute of Technology, Chennai Campus, Chennai, Tamil Nadu, India
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | | | | | - Islam S Marae
- Department of Chemistry, Assiut University, Assiut, Egypt
| | - Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, England
- Chemistry Department, Minia University, El-Minia, Egypt
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, Los Angeles, USA
| |
Collapse
|
3
|
Zala AR, Tiwari R, Naik HN, Ahmad I, Patel H, Jauhari S, Kumari P. Design and synthesis of pyrrolo[2,3-d]pyrimidine linked hybrids as α-amylase inhibitors: molecular docking, MD simulation, ADMET and antidiabetic screening. Mol Divers 2024; 28:1681-1695. [PMID: 37344700 DOI: 10.1007/s11030-023-10683-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Novel pyrrolo[2,3-d]pyrimidine-based analogues were designed, synthesized, and evaluated for their ability to inhibit the α-amylase enzyme in order to treat diabetes. In vitro antidiabetic analysis demonstrated excellent antidiabetic action for compounds 5b, 6c, 7a, and 7b, with IC50 values in the 0.252-0.281 mM range. At a 200 μg/mL concentration, the exceptional percent inhibition values for compounds 5a, 5b, 5d, and 6a varied from 97.79 ± 2.86% to 85.56 ± 4.13% overperforming the standard (acarbose). Molecular docking of all compounds performed with Bacillus paralicheniformis α-amylase enzyme. The most active compounds via in vitro and non-toxic via in silico ADMET and molecular docking analysis, hybrids 6c, 7a, and 7b displayed binding affinity from - 8.2 and - 8.5 kcal/mol. Molecular dynamic simulations of most active compound 5b and 7a investigated into the active sites of the Bacillus paralicheniformis α-amylase enzyme for a 100-ns indicating the stability of hybrid-protein complex. Consistent RGyr values for the two complexes under study further suggest that the system's proteins are closely packed in the dynamic state. Synthesized analogs' in vitro biological assessments, ADMET, molecular docking, and MD modelling reveal that 5b, 6c, 7a, and 7b hybrid analogs may be employed in the development of future antidiabetic drugs.
Collapse
Affiliation(s)
- Ajayrajsinh R Zala
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Ramgopal Tiwari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Hem N Naik
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, 424002, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Smita Jauhari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| | - Premlata Kumari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India.
| |
Collapse
|
4
|
El Bakri Y, Ahmad B, Saravanan K, Ahmad I, Bakhite EA, Younis O, Al-Waleedy SAH, Ibrahim OF, Nafady A, Mague JT, Mohamed SK. Insight into crystal structures and identification of potential styrylthieno[2,3- b]pyridine-2-carboxamidederivatives against COVID-19 Mpro through structure-guided modeling and simulation approach. J Biomol Struct Dyn 2024; 42:4325-4343. [PMID: 37318002 DOI: 10.1080/07391102.2023.2220799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Anti-SARS-CoV-2 drugs are urgently needed to prevent the pandemic and for immunization. Their protease inhibitor treatment for COVID-19 has been used in clinical trials. In Calu-3 and THP1 cells, 3CL SARS-CoV-2 Mpro protease is required for viral expression, replication, and the activation of the cytokines IL-1, IL-6, and TNF-. The Mpro structure was chosen for this investigation because of its activity as a chymotrypsin-like enzyme and the presence of a cysteine-containing catalytic domain. Thienopyridine derivatives increase the release of nitric oxide from coronary endothelial cells, which is an important cell signaling molecule with antibacterial activity against bacteria, protozoa, and some viruses. Using DFT calculations, global descriptors are computed from HOMO-LUMO orbitals; the molecular reactivity sites are analyzed from an electrostatic potential map. NLO properties are calculated, and topological analysis is also part of the QTAIM studies. Both compounds 1 and 2 were designed from the precursor molecule pyrimidine and exhibited binding energies (-14.6708 kcal/mol and -16.4521 kcal/mol). The binding mechanisms of molecule 1 towards SARS-COV-2 3CL Mpro exhibited strong hydrogen bonding as well as Vdw interaction. In contrast, derivative 2 was bound to the active site protein's active studied that several residues and positions, including (His41, Cys44, Asp48, Met49, Pro52, Tyr54, Phe140, Leu141, Ser144, His163, Ser144, Cys145, His164, Met165, Glu166, Leu167, Asp187, Gln189, Thr190, and GLn192) are critical for the maintenance of inhibitors inside the active pocket. Molecular docking and 100 ns MD simulation analysis revealed that Both compounds 1 and 2 with higher binding affinity and stability toward the SARS-COV-2 3CL Mpro protein. Binding free energy calculations and other MD parameters support the finding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| | - Basharat Ahmad
- Department of Bioinformatics, Hazara University Mansehra, Mansehra, Pakistan
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Etify A Bakhite
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama Younis
- Chemistry Department, Faculty of Science, the New Valley University, El-Kharja, Egypt
| | | | - Omaima F Ibrahim
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, England
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| |
Collapse
|
5
|
Elsaman T, Ahmad I, Eltayib EM, Suliman Mohamed M, Yusuf O, Saeed M, Patel H, Mohamed MA. Flavonostilbenes natural hybrids from Rhamnoneuron balansae as potential antitumors targeting ALDH1A1: molecular docking, ADMET, MM-GBSA calculations and molecular dynamics studies. J Biomol Struct Dyn 2024; 42:3249-3266. [PMID: 37261483 DOI: 10.1080/07391102.2023.2218936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Several studies have linked Cancer stem cells (CSCs) to cancer resistance development to chemotherapy and radiotherapy. ALDH1A1 is a key enzyme that regulates the gene expression of CSCs and creates an immunosuppressive tumor microenvironment. It was reported that quercetin and resveratrol were among the inhibitors of ALDH1A1. In early 2022, it was reported that new 11 flavonostilbenes (rhamnoneuronal D-N) were isolated from Rhamnoneuron balansae as potential antiaging natural products. Rhamnoneuronal H (5) could be envisioned as a natural hybrid of quercetin and resveratrol. It was therefore hypothesized that 5 and its analogous isolates rhamnoneuronal D-G (1-4) and rhamnoneuronal I-N (6-11) would have potential ALDH1A1 inhibitory activity. To this end, all isolates were subjected to molecular docking, MM-GBSA, ADMET, and molecular dynamics simulations studies to assess their potential as new leads for cancer treatment targeting ALDH1A1. In silico findings revealed that natural hybrid 5 has a similar binding affinity, judged by MM-GBSA, to the ALDH1A1 active site when compared to the co-crystalized ligand (-64.71 kcal/mole and -64.12 kcal/mole, respectively). Despite having lesser affinity than that of the co-crystalized ligand, the rest of the flavonostilbenes, except 2-4, displayed better binding affinities (-37.55 kcal/mole to -58.6 kcal/mole) in comparison to either resveratrol (-34.44 kcal/mole) or quercetin (-36.48 kcal/mole). Molecular dynamic simulations showed that the natural hybrids 1, 5-11 are of satisfactory stability up to 100 ns. ADMET outcomes indicate that these hybrids displayed acceptable properties and hence could represent an ideal starting point for the development of potent ALDH1A1 inhibitors for cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Osman Yusuf
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Neelain University, Khartoum, Sudan
| | | | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| |
Collapse
|
6
|
Karande S, Das B, Acharya SS, Kumar A, Patel H, Sharma A, Gupta M, Ahmad I, Bhandare V, Sharma K, Kundu CN, Patil C. Computational and in vitro screening validates the repositioning potential of Coxibs as anti-fibrotic agents. J Biomol Struct Dyn 2024:1-13. [PMID: 38433403 DOI: 10.1080/07391102.2024.2318655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with a survival rate of <5 years. The TGF-β plays a significant role in the progression and severity of IPF. The TGF-β receptor type1 TGFBR1 antagonists inhibit the process of fibrosis and may have a role in the treatment of IPF. The main objective of the study was to identify promising drug candidates against IPF using In-silico and In-vitro evaluation methods. An in-silico screening was carried out of the marketed Coxibs to find their TGFBR1 inhibitory potential considering their structural resemblance with the JZO-a co-crystalized ligand of the crystal structure of the TGFBR1. The virtual screening yielded rofecoxib as a TGFBR1 ligand with a significant docking score. To further validate the outcome of molecular docking studies, MD simulation of 200 ns was carried out followed by the determination of conformational stability, binding free energy calculation using MMPBSA/MMGBSA, and Free Energy Landscape (FEL). The therapeutic efficacy of rofecoxib was compared with that of nintedanib (a therapeutic agent used in the treatment of IPF) at equimolar concentrations (5 µM). The model of TGF-β1 (1 ng/ml)-induced EMT of A549 was used to determine the effect of rofecoxib on the EMT markers like cellular morphology, cytokine expressions, fibrosis associated protein, E-cadherin, and α-smooth muscle actin. In vitro results indicated that rofecoxib significantly suppresses the TGF-β1-induced EMT of A549 cells and validates the possible preventive/protective role of rofecoxib in pulmonary fibrosis. In conclusion, rofecoxib may be considered for repositioning as an anti-fibrotic agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Biswajit Das
- KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | | | - Anoop Kumar
- Department of Pharmacology, DPSRU, New Delhi, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Ajay Sharma
- Department of Pharmacognosy, DPSRU, New Delhi, India
| | - Madhu Gupta
- Department of Pharmaceutics, DPSRU, New Delhi, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | | | | | - Chanakya Nath Kundu
- KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Chandragouda Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
7
|
Anjali, Kamboj P, Alam O, Patel H, Ahmad I, Ahmad SS, Amir M. Design, synthesis, biological evaluation, and in silico studies of quinoxaline derivatives as potent p38α MAPK inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300301. [PMID: 37847883 DOI: 10.1002/ardp.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
A new series of quinoxaline derivatives possessing the hydrazone moiety were designed, synthesized, and screened for in-vitro anti-inflammatory activity by the bovine serum albumin (BSA) denaturation technique, and for antioxidant activity, by the (2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The synthesized compounds were also tested for p38α mitogen-activated protein (MAP) kinase inhibition. The in-vivo anti-inflammatory activity was assessed by the carrageenan-induced rat paw edema inhibition method. All the compounds (4a-n) exhibited moderate to high in-vitro anti-inflammatory activity. Compound 4a displayed the highest inhibitory activity in the BSA assay (83.42%) in comparison to the standard drug diclofenac sodium (82.90%), while 4d exhibited comparable activity (81.87%). The DPPH assay revealed that compounds 4a and 4d have free radical scavenging potential (74.70% and 74.34%, respectively) comparable to the standard butylated hydroxyanisole (74.09%). Furthermore, the p38α MAP kinase inhibition assay demonstrated that compound 4a is highly selective against p38α MAP kinase (IC50 = 0.042) in comparison to the standard SB203580 (IC50 = 0.044). The five most active compounds (4a-4d and 4f) with good in-vitro profiles were selected for in-vivo anti-inflammatory studies. Compounds 4a and 4d were found to display the highest activity (83.61% and 82.92% inhibition, respectively) in comparison to the standard drug diclofenac sodium (82.65% inhibition). These compounds (4a and 4d) also exhibited better ulcerogenic and lipid peroxidation profiles than diclofenac sodium. The molecular docking and molecular dynamics simulation studies were also performed and found to be in agreement with the p38α MAP kinase inhibitory activity.
Collapse
Affiliation(s)
- Anjali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Payal Kamboj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, Division of Computer Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
| | - Syed Sufian Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Noumi E, Ahmad I, Adnan M, Patel H, Merghni A, Haddaji N, Bouali N, Alabbosh KF, Kadri A, Caputo L, Polito F, Snoussi M, Feo VD. Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules 2023; 28:7691. [PMID: 38067422 PMCID: PMC10707387 DOI: 10.3390/molecules28237691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Illicium verum, or star anise, has many uses ranging from culinary to religious. It has been used in the food industry since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained via hydro-distillation of the aerial parts of Illicium verum. Twenty-four components were identified representing 92.55% of the analyzed essential oil. (E)-anethole (83.68%), limonene (3.19%), and α-pinene (0.71%) were the main constituents of I. verum EO. The results show that the obtained EO was effective against eight bacterial strains to different degrees. Concerning the antibiofilm activity, trans-anethole was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that I. verum EO possesses more potent inhibitory effects on the swarming behavior of PAO1 when compared to trans-anethole, with the percentage reaching 38% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirmed their important pharmacokinetic and drug-likeness properties. The in silico study using a molecular docking approach revealed a high binding score between the identified compounds with known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results suggest I. verum EO to be a potentially good antimicrobial agent to prevent food contamination with foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India;
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Najla Haddaji
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Nouha Bouali
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Khulood Fahad Alabbosh
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Adel Kadri
- College of Science and Arts in Baljurashi, Al-Baha University, P.O. Box 1988, Al Baha 65527, Saudi Arabia;
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| |
Collapse
|
9
|
Moulishankar A, Thirugnanasambandam S. Quantitative structure activity relationship (QSAR) modeling study of some novel thiazolidine 4-one derivatives as potent anti-tubercular agents. J Recept Signal Transduct Res 2023; 43:83-92. [PMID: 37990804 DOI: 10.1080/10799893.2023.2281671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/03/2023] [Indexed: 11/23/2023]
Abstract
This study aims to develop a QSAR model for Antitubercular activity. The quantitative structure-activity relationship (QSAR) approach predicted the thiazolidine-4-ones derivative's Antitubercular activity. For the QSAR study, 53 molecules with Antitubercular activity on H37Rv were collected from the literature. Compound structures were drawn by ACD/Labs ChemSketch. The energy minimization of the 2D structure was done using the MM2 force field in Chem3D pro. PaDEL Descriptor software was used to construct the molecular descriptors. QSARINS software was used in this work to develop the 2D QSAR model. A series of thiazolidine 4-one with MIC data were taken from the literature to develop the QSAR model. These compounds were split into a training set (43 compounds) and a test set (10 compounds). The PaDEL software calculated 2300 descriptors for this series of thiazolidine 4-one derivatives. The best predictive Model 4, which has R2 of 0.9092, R2adj of 0.8950 and LOF parameter of 0.0289 identify a preferred fit. The QSAR study resulted in a stable, predictive, and robust model representing the original dataset. In the QSAR equation, the molecular descriptor of MLFER_S, GATSe2, Shal, and EstateVSA 6 positively correlated with Antitubercular activity. While the SpMAD_Dzs 6 is negatively correlated with Antitubercular activity. The high polarizability, Electronegativities, Surface area contributions and number of Halogen atoms in the thiazolidine 4-one derivatives will increase the Antitubercular activity.
Collapse
Affiliation(s)
- Anguraj Moulishankar
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| | - Sundarrajan Thirugnanasambandam
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| |
Collapse
|
10
|
Zala AR, Naik HN, Ahmad I, Patel H, Jauhari S, Kumari P. Design and synthesis of novel 1,2,3-triazole linked hybrids: Molecular docking, MD simulation, and their antidiabetic efficacy as α-Amylase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
11
|
Tabti K, Ahmad I, Zafar I, Sbai A, Maghat H, Bouachrine M, Lakhlifi T. Profiling the Structural determinants of pyrrolidine derivative as gelatinases (MMP-2 and MMP-9) inhibitors using in silico approaches. Comput Biol Chem 2023; 104:107855. [PMID: 37023640 DOI: 10.1016/j.compbiolchem.2023.107855] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Quantitative structure activity relationship (QSAR) studies on pyrrolidine derivatives have been established using CoMFA, CoMSIA, and Hologram QSAR analysis to estimate the values (pIC50) of gelatinase inhibitors. When the CoMFA cross-validation value, Q², was 0.625, the training set coefficient of determination, R² was 0.981. In CoMSIA, Q² was 0.749 and R² was 0.988. In the HQSAR, Q² was 0.84 and R² was 0.946. Visualization of these models was performed by contour maps showing favorable and unfavorable regions for activity, while visualization of HQSAR model was performed by a colored atomic contribution graph. Based on the results obtained of external validation, the CoMSIA model was statistically more significant and robust and was selected as the best model to predict new, more active inhibitors. To study the modes of interactions of the predicted compounds in the active site of MMP-2 and MMP-9, a simulation of molecular docking was realized. A combined study of MD simulations and calculation of free binding energy, were also carried out to validate the results obtained on the best predicted and most active compound in dataset and the compound NNGH as control compound. The results confirm the molecular docking results and indicate that the predicted ligands were stable in the binding site of MMP-2 and MMP-9.
Collapse
|