1
|
Hossain FMA, Bappy MNI, Robin TB, Ahmad I, Patel H, Jahan N, Rabbi MGR, Roy A, Chowdhury W, Ahmed N, Prome AA, Rani NA, Khan P, Zinnah KMA. A review on computational studies and bioinformatics analysis of potential drugs against monkeypox virus. J Biomol Struct Dyn 2024; 42:6091-6107. [PMID: 37403283 DOI: 10.1080/07391102.2023.2231542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Monkeypox, a viral disease that is caused by monkeypox virus and occurs mainly in central and western Africa. However, recently it is spreading worldwide and took the focus of the scientific world towards it. Therefore, we made an attempt to cluster all the related information that may make it easy for the researchers to get the information easily and carry out their research smoothly to find prophylaxis against this emerging virus. There are very few researches found available on monkeypox. Almost all the studies were focused on smallpox virus and the recommended vaccines and therapeutics for monkeypox virus were originally developed for smallpox virus. Though these are recommended for emergency cases, they are not fully effective and specific against monkeypox. For this, here we also took the help of bioinformatics tools to screen potential drug candidates against this growing burden. Some potential antiviral plant metabolites, inhibitors and available drugs were scrutinized that can block the essential survival proteins of this virus. All the compounds Amentoflavone, Pseudohypericin, Adefovirdipiboxil, Fialuridin, Novobiocin and Ofloxacin showed elite binding efficiency with suitable ADME properties and Amentoflavone and Pseudohypericin showed stability in MD simulation study indicating their potency as probable drugs against this emerging virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Science, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Dairy Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, Division of Computer Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Nusrat Jahan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Gulam Rabbany Rabbi
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Anindita Roy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Wasima Chowdhury
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nadim Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Anindita Ash Prome
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Parvez Khan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kazi Md Ali Zinnah
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
2
|
Kumar M, Parveen, Raj N, Khatoon S, Fakhri KU, Kumar P, Alamri MA, Kamal M, Manzoor N, Harsha, Solanki R, Elossaily GM, Asiri YI, Hassan MZ, Kapur MK. In-silico and in-vitro evaluation of antifungal bioactive compounds from Streptomyces sp. strain 130 against Aspergillus flavus. J Biomol Struct Dyn 2024:1-19. [PMID: 38319066 DOI: 10.1080/07391102.2024.2313167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Streptomyces spp. are considered excellent reservoirs of natural bioactive compounds. The study evaluated the bioactive potential of secondary metabolites from Streptomyces sp. strain 130 through PKS-I and NRPS gene-clusters screening. GC-MS analysis was done for metabolic profiling of bioactive compounds from strain 130 in the next set of experiments. Identified antifungal compounds underwent ADMET analyses to screen their toxicity. All compounds' molecular docking was done with the structural gene products of the aflatoxin biosynthetic pathway of Aspergillus flavus. MD simulations were utilized to evaluate the stability of protein-ligand complexes under physiological conditions. Based on the in-silico studies, compound 2,4-di-tert butyl-phenol (DTBP) was selected for in-vitro studies against Aspergillus flavus. Simultaneously, bioactive compounds were extracted from strain 130 in two different solvents (ethyl-acetate and methanol) and used for similar assays. The MIC value of DTBP was found to be 314 µg/mL, whereas in ethyl-acetate extract and methanol-extract, it was 250 and 350 µg/mL, respectively. A mycelium growth assay was done to analyze the effect of compounds/extracts on the mycelium formation of Aspergillus flavus. In agar diffusion assay, zone of inhibitions in DTBP, ethyl-acetate extract, and methanol extract were observed with diameters of 11.3, 13.3, and 7.6 mm, respectively. In the growth curve assay, treated samples have delayed the growth of fungi, which signified that the compounds have a fungistatic nature. Spot assay has determined the fungal sensitivity to a sub-minimum inhibitory concentration of antifungal compounds. The study's results suggested that DTBP can be exploited for antifungal-drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Munendra Kumar
- Department of Zoology, Rajiv Gandhi University, Doimukh, India
| | - Parveen
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Nafis Raj
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shabana Khatoon
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Prateek Kumar
- Department of Zoology, University of Allahabad, Prayagraj, India
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Harsha
- Microbial Technology Lab, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, India New Delhi
| | - Renu Solanki
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Yahya I Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohd Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Monisha Khanna Kapur
- Microbial Technology Lab, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, India New Delhi
| |
Collapse
|
3
|
Pardhi E, Tomar DS, Khemchandani R, Bazaz MR, Dandekar MP, Samanthula G, Singh SB, Mehra NK. Monophasic coamorphous sulpiride: a leap in physicochemical attributes and dual inhibition of GlyT1 and P-glycoprotein, supported by experimental and computational insights. J Biomol Struct Dyn 2024:1-30. [PMID: 38299571 DOI: 10.1080/07391102.2024.2308048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Study aimed to design and development of a supramolecular formulation of sulpiride (SUL) to enhance its solubility, dissolution and permeability by targeting a novel GlyT1 inhibition mechanism. SUL is commonly used to treat gastric and duodenal ulcers, migraine, anti-emetic, anti-depressive and anti-dyspeptic conditions. Additionally, Naringin (NARI) was incorporated as a co-former to enhance the drug's intestinal permeability by targeting P-glycoprotein (P-gp) efflux inhibition. NARI, a flavonoid has diverse biological activities, including anti-apoptotic, anti-oxidant, and anti-inflammatory properties. This study aims to design and develop a supramolecular formulation of SUL with NARI to enhance its solubility, dissolution, and permeability by targeting a novel GlyT1 inhibition mechanism, extensive experimental characterization was performed using solid-state experimental techniques in conjunction with a computational approach. This approach included quantum mechanics-based molecular dynamics (MD) simulation and density functional theory (DFT) studies to investigate intermolecular interactions, phase transformation and various electronic structure-based properties. The findings of the miscibility study, radial distribution function (RDF) analysis, quantitative simulations of hydrogen/π-π bond interactions and geometry optimization aided in comprehending the coamorphization aspects of SUL-NARI Supramolecular systems. Molecular docking and MD simulation were performed for detailed binding affinity assessment and target validation. The solubility, dissolution and ex-vivo permeability studies demonstrated significant improvements with 31.88-fold, 9.13-fold and 1.83-fold increments, respectively. Furthermore, biological assessments revealed superior neuroprotective effects in the SUL-NARI coamorphous system compared to pure SUL. In conclusion, this study highlights the advantages of a drug-nutraceutical supramolecular formulation for improving the solubility and permeability of SUL, targeting novel schizophrenia treatment approaches through combined computational and experimental analyses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Devendra Singh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Rahul Khemchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
4
|
Alhawday F, Alminderej F, Ghannay S, Hammami B, Albadri AEAE, Kadri A, Aouadi K. In Silico Design, Synthesis, and Evaluation of Novel Enantiopure Isoxazolidines as Promising Dual Inhibitors of α-Amylase and α-Glucosidase. Molecules 2024; 29:305. [PMID: 38257218 PMCID: PMC10818600 DOI: 10.3390/molecules29020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Isoxazolidine derivatives were designed, synthesized, and characterized using different spectroscopic techniques and elemental analysis and then evaluated for their ability to inhibit both α-amylase and α-glucosidase enzymes to treat diabetes. All synthesized derivatives demonstrated a varying range of activity, with IC50 values ranging from 53.03 ± 0.106 to 232.8 ± 0.517 μM (α-amylase) and from 94.33 ± 0.282 to 258.7 ± 0.521 μM (α-glucosidase), revealing their high potency compared to the reference drug, acarbose (IC50 = 296.6 ± 0.825 µM and 780.4 ± 0.346 µM), respectively. Specifically, in vitro results revealed that compound 5d achieved the most inhibitory activity with IC50 values of 5.59-fold and 8.27-fold, respectively, toward both enzymes, followed by 5b. Kinetic studies revealed that compound 5d inhibits both enzymes in a competitive mode. Based on the structure-activity relationship (SAR) study, it was concluded that various substitution patterns of the substituent(s) influenced the inhibitory activities of both enzymes. The server pkCSM was used to predict the pharmacokinetics and drug-likeness properties for 5d, which afforded good oral bioavailability. Additionally, compound 5d was subjected to molecular docking to gain insights into its binding mode interactions with the target enzymes. Moreover, via molecular dynamics (MD) simulation analysis, it maintained stability throughout 100 ns. This suggests that 5d possesses the potential to simultaneously target both enzymes effectively, making it advantageous for the development of antidiabetic medications.
Collapse
Affiliation(s)
- Fahad Alhawday
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
| | - Fahad Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
| | - Bechir Hammami
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
- Faculty of Sciences of Bizerte FSB, University of Carthage, Jarzouna 7021, Tunisia
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
| | - Adel Kadri
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
- Faculty of Science and Arts in Baljurashi, Al-Baha University, P.O. Box 1988, Al-Baha 65527, Saudi Arabia
| | - Kaiss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (F.A.); (F.A.); (S.G.); (B.H.); (A.E.A.E.A.)
- Laboratory of Heterocyclic Chemistry, LR11ES39, Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| |
Collapse
|
5
|
Naik HN, Kanjariya D, Parveen S, Ahmed I, Meena A, Patel H, Meena R, Jauhari S. LC-MS profiling, in vitro and in silico C-ABL kinase inhibitory approach to identify potential anticancer agents from Dalbergia sissoo leaves. Sci Rep 2024; 14:73. [PMID: 38167560 PMCID: PMC10761914 DOI: 10.1038/s41598-023-49995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Belonging to the Fabaceae family, Dalbergia sissoo, a versatile plant, has gained prominence for its potent medicinal attributes, especially antipyretic, anti-inflammatory, and cardioprotective properties, as well as the use of its leaf juice in cancer treatment. Despite these recognized applications by natives and tribals, comprehensive insight into its biological activities and chemical composition remains limited. This study aimed to explore the cytotoxic potential of sequentially extracted leaf extracts from Dalbergia sissoo using various solvents, aiming to unveil the array of phytochemicals through LC-MS profiling. Among the extracts evaluated, the extract employing methanol:water extracting media (HN-2) appeared with the most remarkable results in both phytochemical diversity and biological activity. Furthermore, in vitro results of HN-2's in vitro anticancer efficacy were confirmed through in silico molecular docking and molecular dynamics simulation. These analyses demonstrated its ability to inhibit C-ABL kinase within leukemia K562 cells, directing that Dalbergia sissoo leaves serve as a bioactive agent reservoir. Consequently, this suggests that the Dalbergia sissoo plant is a potential source of bioactive compounds that can be used as a precursor for developing new cancer inhibitors, mainly targeting leukemia.
Collapse
Affiliation(s)
- Hem N Naik
- Department of Chemistry, SV National Institute of Technology, Surat, Gujarat, 395007, India
| | - Dilip Kanjariya
- Department of Chemistry, SV National Institute of Technology, Surat, Gujarat, 395007, India
| | - Shahnaz Parveen
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Iqrar Ahmed
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, 424002, India
| | - Abha Meena
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, 226015, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Ramavatar Meena
- Natural Product and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Smita Jauhari
- Department of Chemistry, SV National Institute of Technology, Surat, Gujarat, 395007, India.
| |
Collapse
|
6
|
Abdullahi M, Uzairu A, Shallangwa GA, Mamza PA, Ibrahim MT, Chandra A, Goel VK. Molecular modelling studies of substituted indole derivatives as novel influenza a virus inhibitors. J Biomol Struct Dyn 2023:1-20. [PMID: 37964590 DOI: 10.1080/07391102.2023.2280735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
The emergence of drug-resistant strains motivate researchers to find new innovative anti-IAV candidates with a different mode of action. In this work, molecular modelling strategies, such as 2D-QSAR, 3D-QSAR, molecular docking, molecular dynamics, FMOs, and ADMET were applied to some substituted indoles as IAV inhibitors. The best-developed 2D-QSAR models, MLR (Q2 = 0.7634, R2train = 0.8666) and ANN[4-3-1] (Q2 = 0.8699, R2train = 0.8705) revealed good statistical validation for the inhibitory response predictions. The 3D-QSAR models, CoMFA (Q2 = 0.504, R2train = 0.805) and CoMSIA/SEDHA (Q2 = 0.619, R2train = 0.813) are selected as the best 3D models following the global thresholds. In addition, the contour maps generated from the CoMFA and CoMSIA models illustrate the relationship between the molecular fields and the inhibitory effects of the studied molecules. The results of the studies led to the design of five new molecules (24a-e) with enhanced anti-IAV activities and binding potentials using the most active molecule (24) as the template scaffold. The conformational stability of the best-designed molecules with the NA protein showed hydrophobic and H-bonds with the key residues from the molecular dynamics simulations of 100 ns. Furthermore, the global reactivity indices from the DFT calculations portrayed the relevance of 24c in view of its smaller band gap as also justified by our QSAR and molecular simulation studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustapha Abdullahi
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, Kaduna State University, Kaduna, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Gideon Adamu Shallangwa
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Paul Andrew Mamza
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Muhammad Tukur Ibrahim
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Anshuman Chandra
- School of Physical Science, Jawaharlal Nehru University, New Delhi, India
| | - Vijay Kumar Goel
- School of Physical Science, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|