1
|
Rigano L, Schmitz M, Linnemann V, Krauss M, Hollert H, Pfenninger M. Exposure to complex mixtures of urban sediments containing Tyre and Road Wear Particles (TRWPs) increases the germ-line mutation rate in Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107292. [PMID: 39985910 DOI: 10.1016/j.aquatox.2025.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Tyre and road wear particles (TRWPs) are a significant yet often underestimated source of environmental pollution, contributing to the accumulation of microplastics and a complex mixture of contaminants in both terrestrial and aquatic ecosystems. Despite their prevalence, the long-term evolutionary effects of TRWPs, beyond their immediate toxicity, remain largely unknown. In this study, we assessed mutagenicity in the non-biting midge Chironomus riparius, upon exposure to urban sediment collected from a runoff sedimentation basin. To assess the extent of mutagenic effects over multiple generations, we combined the urban sediment exposure model with short-term mutation accumulation lines (MALs) and subsequent whole genome sequencing (WGS). The study was conducted over five generations, with urban sediment concentrations of 0.5 % and 10 %. Our results reveal that the exposure to urban sediment significantly increases mutation rates compared to control groups by 50 %, independent of concentration (0.5 % and 10 %). To infer potential causal processes, we conducted a comparative analysis using known mutational spectra from previous studies. This comparison showed that the mutation profiles induced by urban sediment clearly clustered with those caused by Benzo[a]Pyrene (BaP), a known Polycyclic Aromatic Hydrocarbon (PAH). A comprehensive chemical characterization of the sediment confirmed a considerable impact of road runoff and traffic-related contamination, including PAHs of primarily petrogenic origin. This suggests that PAH-like compounds present in urban sediments may play a significant role in the observed mutagenic effects. Our study shows that urban sediments influence mutation rates and alter mutational spectra in exposed organisms, potentially compromising genomic stability and shaping evolutionary trajectories. These genetic changes can have profound long-term effects on population dynamics and ecosystem health, underlining the importance of understanding the evolutionary consequences of environmental pollution. Additionally, we show that comparatively analysing of mutational spectra may provide valuable insights into mutational processes.
Collapse
Affiliation(s)
- Lorenzo Rigano
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany.
| | - Markus Schmitz
- Department of Evolutionary Ecology & Environmental Toxicology (E3T), Institute for Ecology, Evolution and Diversity, Faculty 15 Biological Sciences, Goethe University Frankfurt am Main, Germany
| | - Volker Linnemann
- Institute for Environmental Engineering, RWTH Aachen University, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Henner Hollert
- LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Department of Evolutionary Ecology & Environmental Toxicology (E3T), Institute for Ecology, Evolution and Diversity, Faculty 15 Biological Sciences, Goethe University Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becker-Weg 7, D-55128, Mainz, Germany
| |
Collapse
|
2
|
Bhat SA, Chandramohan S, Subramanian S, Pajaniradje S, Yadav N, Rajagopalan R. Deciphering the cytotoxic potential of acamprosate and acamprosate loaded mesoporous silica nanoparticles in hepatocellular carcinoma: an in vitro and in silico approach. Drug Dev Ind Pharm 2024:1-20. [PMID: 39226131 DOI: 10.1080/03639045.2024.2400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hepatocellular carcinoma (HCC) is a healthcare concern that causes most cancer-linked deaths around the world. This work was aimed at unraveling the anticancer potential of acamprosate and development of mesoporous silica nanoparticle (MSN) drug delivery system to increase the therapeutic efficacy of acamprosate. For this purpose, the MSNs were synthesized and encapsulated with acamprosate (MSN-Acamp). The MSN and MSN-Acamp were characterized by DLS, Zeta potential, UV spectroscopy, SEM, FTIR, XRD, DFT, and XPS. Biological effects were evaluated by MTT and lactate dehydrogenase assays. The apoptotic mode of cell death was evaluated by fluorescence imaging and DNA fragmentation assay. Cell cycle assessment and Annexin V-FITC/PI staining were performed to depict the phase of cell arrest and stage of apoptotic cells respectively. The acamprosate was found to exhibit cytotoxic effect and MSN-Acamp exhibited an increased cytotoxicity. Apoptotic mode of cell death was revealed by fluorescence imaging as nuclear fragmentation, production of reactive oxygen species (ROS), loss of membrane potential in mitochondria, and chromatin condensation/fragmentation were found. The docking results revealed that acamprosate had a considerable binding affinity with Bcl-2, Mcl-1, EGFR, and mTOR proteins. Overall, our results indicated that acamprosate and MSN-Acamp had a potent apoptotic effect and MSNs are propitious drug carriers to increase therapeutic effect in HCC.
Collapse
Affiliation(s)
- Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Neena Yadav
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
3
|
Mir IH, Shyam KT, Balakrishnan SS, Kumar MS, Ramesh T, Thirunavukkarasu C. Elucidation of escitalopram oxalate and related antidepressants as putative inhibitors of PTP4A3/PRL-3 protein in hepatocellular carcinoma: A multi-computational investigation. Comput Biol Chem 2024; 110:108039. [PMID: 38471352 DOI: 10.1016/j.compbiolchem.2024.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Hepatocellular carcinoma (HCC) persists to be one of the most devastating and deadliest malignancies globally. Recent research into the molecular signaling networks entailed in many malignancies has given some prominent insights that can be leveraged to create molecular therapeutics for combating HCC. Therefore, in the current communication, an in-silico drug repurposing approach has been employed to target the function of PTP4A3/PRL-3 protein in HCC using antidepressants: Fluoxetine hydrochloride, Citalopram, Amitriptyline, Imipramine, and Escitalopram oxalate as the desired ligands. The density function theory (DFT) and chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters for the chosen ligands were evaluated to comprehend the pharmacokinetics, drug-likeness properties, and bioreactivity of the ligands. The precise interaction mechanism was explored using computational methods such as molecular docking and molecular dynamics (MD) simulation studies to assess the inhibitory effect and the stability of the interactions against the protein of interest. Escitalopram oxalate exhibited a comparatively significant docking score (-7.4 kcal/mol) compared to the control JMS-053 (-6.8 kcal/mol) against the PRL-3 protein. The 2D interaction plots exhibited an array of hydrophobic and hydrogen bond interactions. The findings of the ADMET forecast confirmed that it adheres to Lipinski's rule of five with no violations, and DFT analysis revealed a HOMO-LUMO energy gap of -0.26778 ev, demonstrating better reactivity than the control molecule. The docked complexes were subjected to MD studies (100 ns) showing stable interactions. Considering all the findings, it can be concluded that Escitalopram oxalate and related therapeutics can act as potential pharmacological candidates for targeting the activity of PTP4A3/PRL-3 in HCC.
Collapse
Affiliation(s)
- Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - Kankipati Teja Shyam
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | | | | | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
4
|
Nowdehi J, Mosaddegh E, Khaksar S, Torkzadeh-Mahani M, Beihaghi M, Yazdani M. Synthesis, in silico studies, and in vitro biological evaluation of newly-designed 5-amino-1 H-tetrazole-linked 5-fluorouracil analog as a potential antigastric-cancer agent. J Biomol Struct Dyn 2024:1-19. [PMID: 38385480 DOI: 10.1080/07391102.2024.2318480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
5-Fluorouracil (5FU) is a chemotherapy drug used to treat various cancers, such as colorectal, prostate, skin, pancreas, and stomach, as an ointment or solution. However, its consumption has several side effects. Therefore, a new derivative of fluorouracil containing 5-Amino-1H-tetrazole was designed and synthesized through multi-step synthesis to reduce urea excretion and toxicity. The effectiveness of the synthesized drug on the Adenocarcinoma gastric cell line (AGS) gastric cancer cell line was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, which showed that the new 5-fluorouracil (5FU) analog, with an IC50 of 15.67 µg/mL, is more effective in inhibiting the proliferation of AGS cells after 24 h compared to both synthesized and reported 5FU. In addition, In-silico studies showed that the new 5FU derivative based on amino tetrazole, with a binding energy of -7.2 kcal/mol, exhibits greater anti-cancer activity against the BCL2 enzyme than 5FU, with a binding energy of - 4.8 kcal/mol. It is predicted that the new 5FU derivative will be effective in treating gastric and colorectal cancers. The new derivative of the 5-fluorouracil drug was characterized and identified using FTIR and NMR spectroscopy.
Collapse
Affiliation(s)
- Javad Nowdehi
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| | - Elaheh Mosaddegh
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
- Department of New Materials, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Samad Khaksar
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Maria Beihaghi
- Deartment of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatic and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Akash S, Mir SA, Mahmood S, Hossain S, Islam MR, Mukerjee N, Nayak B, Nafidi HA, Bin Jardan YA, Mekonnen A, Bourhia M. Novel computational and drug design strategies for inhibition of monkeypox virus and Babesia microti: molecular docking, molecular dynamic simulation and drug design approach by natural compounds. Front Microbiol 2023; 14:1206816. [PMID: 37538847 PMCID: PMC10394520 DOI: 10.3389/fmicb.2023.1206816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/20/2023] [Indexed: 08/05/2023] Open
Abstract
Background The alarming increase in tick-borne pathogens such as human Babesia microti is an existential threat to global public health. It is a protozoan parasitic infection transmitted by numerous species of the genus Babesia. Second, monkeypox has recently emerged as a public health crisis, and the virus has spread around the world in the post-COVID-19 period with a very rapid transmission rate. These two novel pathogens are a new concern for human health globally and have become a significant obstacle to the development of modern medicine and the economy of the whole world. Currently, there are no approved drugs for the treatment of this disease. So, this research gap encourages us to find a potential inhibitor from a natural source. Methods and materials In this study, a series of natural plant-based biomolecules were subjected to in-depth computational investigation to find the most potent inhibitors targeting major pathogenic proteins responsible for the diseases caused by these two pathogens. Results Among them, most of the selected natural compounds are predicted to bind tightly to the targeted proteins that are crucial for the replication of these novel pathogens. Moreover, all the molecules have outstanding ADMET properties such as high aqueous solubility, a higher human gastrointestinal absorption rate, and a lack of any carcinogenic or hepatotoxic effects; most of them followed Lipinski's rule. Finally, the stability of the compounds was determined by molecular dynamics simulations (MDs) for 100 ns. During MDs, we observed that the mentioned compounds have exceptional stability against selected pathogens. Conclusion These advanced computational strategies reported that 11 lead compounds, including dieckol and amentoflavone, exhibited high potency, excellent drug-like properties, and no toxicity. These compounds demonstrated strong binding affinities to the target enzymes, especially dieckol, which displayed superior stability during molecular dynamics simulations. The MM/PBSA method confirmed the favorable binding energies of amentoflavone and dieckol. However, further in vitro and in vivo studies are necessary to validate their efficacy. Our research highlights the role of Dieckol and Amentoflavone as promising candidates for inhibiting both monkeypox and Babesia microti, demonstrating their multifaceted roles in the control of these pathogens.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Sajjat Mahmood
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Saddam Hossain
- Department of Biomedical Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, West Bengal, India
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amare Mekonnen
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| |
Collapse
|