Gupta PK, Singh A, Rana S. Conformational variants of the ternary complex of C5a, C5aR1, and G-protein.
J Biomol Struct Dyn 2024:1-16. [PMID:
38247266 DOI:
10.1080/07391102.2024.2305698]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The complement component fragment 5a (C5a) binds and activates two complement receptors like C5aR1 and C5aR2, which play a significant role in orchestrating the proinflammatory function of C5a in tissues through the recruitment of heterotrimeric G-proteins and β-arrestins. Dysregulation of the complement induces excessive production of C5a, which triggers aberrant activation of the C5a-C5aR1-G-protein and C5a-C5aR2-β-arrestin signalling axes in tissues, contributing to the pathology of numerous immune-inflammatory diseases. Thus, understanding the interaction of C5a with C5aR1 and C5aR2, as well as the interaction of G-protein and β-arrestins, respectively, with C5a-C5aR1 and C5a-C5aR2, holds tremendous therapeutic value. In the absence of structural data, we have previously elaborated the binary complexes of C5a-C5aR1 and C5a-C5aR2, as well as the ternary complex of C5a-C5aR2-β-arrestin1, in highly refined model structures. While our ternary model complex of C5a-C5aR1-G-protein was in progress, two cryo-electron microscopy-based ternary structural complexes of C5aR1 were made available by others. However, it is observed that the interaction of the crucial NT-peptide of C5aR1 with C5a, including the portion of the G⍺i-subunit that harbors the switch-I region, is not fully resolved in both complexes. The current study addresses the issues and provides two highly refined alternative model ternary complexes of C5a-C5aR1-G-protein. The study highlights the conformational heterogeneity in C5aR1 by comparing the two conformational variants of the model ternary complex in the context of C5a-C5aR2-β-arrestin1 for further devising methods and molecules targeting both surface and intracellular C5aR1/C5aR2 for effectively mitigating the proinflammatory role of C5a in various disease settings.Communicated by Ramaswamy H. Sarma.
Collapse