1
|
Evren AE, Nuha D, Özkan BNS, Kahraman Ç, Gönülalan EM, Yurttaş L. Design and synthesis of phenoxy methyl-oxadiazole compounds against Alzheimer's disease. Arch Pharm (Weinheim) 2024; 357:e2400115. [PMID: 38657203 DOI: 10.1002/ardp.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
This study examines the synthesis and evaluation of 11 newly developed compounds as potential anti-Alzheimer's agents that occur via cholinesterase and β-secretase inhibition. The compounds were tested for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using the modified Ellman method. The results showed that several compounds exhibited significant inhibition of AChE, particularly compounds 6d, 7a, and 7e, which demonstrated high inhibitory activity at lower concentrations, with IC50 values of 0.120, 0.039, and 0.063 µM, respectively. However, the compounds showed limited effectiveness against BChE, with only a few compounds exhibiting moderate inhibition. Compound 7e showed an inhibitory effect against BACE-1 close to that of the standard drug. Structural analysis revealed that the compounds with substituted benzothiazole and thiazole moieties exhibited the most promising inhibitory activity. This study provides valuable insights into the potential of these synthesized derivatives as a treatment against Alzheimer's disease. Moreover, the structure, stability, and properties of the active compounds were further investigated using density functional theory calculations. As a final note, the utilization of molecular docking and molecular dynamics simulation studies allowed us to elucidate the action mechanism of the active compounds and gain insights into the structure-activity relationship against AChE and β-secretase proteins. These computational techniques provide valuable information on the binding modes, interactions with target enzymes, dynamic behavior, and conformational changes of the compounds, enabling a comprehensive understanding of their biological activity.
Collapse
Affiliation(s)
- Asaf E Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Department of Pharmacy Services, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Demokrat Nuha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Faculty of Pharmacy, University for Business and Technology, Prishtina, Kosovo
| | - Begüm N S Özkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Çiğdem Kahraman
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ekrem M Gönülalan
- Department of Pharmacognosy, Faculty of Pharmacy, Afyonkarahisar Sağlık Bilimleri University, Afyon, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
2
|
Yücel NT, Asfour AAR, Evren AE, Yazıcı C, Kandemir Ü, Özkay ÜD, Can ÖD, Yurttaş L. Design and synthesis of novel dithiazole carboxylic acid Derivatives: In vivo and in silico investigation of their Anti-Inflammatory and analgesic effects. Bioorg Chem 2024; 144:107120. [PMID: 38219479 DOI: 10.1016/j.bioorg.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Inflammation is a complex set of interactions that can occur in tissues as the body's defensive response to infections, trauma, allergens, or toxic compounds. Therefore, in almost all diseases, it can be observed because of primary or secondary reasons. Since it is important to control and even eliminate the symptoms of inflammation in the treatment of many diseases, anti-inflammatory and analgesic drugs are always needed in the clinic. Therefore, the discovery of new anti-inflammatory/analgesic drugs with increased effectiveness and safer side effect profiles is among the popular topics of medicinal chemistry. Therefore, in this study, in order to synthesize and diversify new molecules, we focused on the N,N-dithiazole carboxylic acid core and linked it with the chalcone functional group. The final eleven molecules were analyzed via HRMS, 1H NMR, and 13C NMR. The antinociceptive effects of the test compounds were examined by tail-clip, hot-plate, and formalin methods in mice, while their anti-inflammatory activities were investigated by carrageenan-induced inflammation tests in rats. The motor activities of the experimental animals were evaluated using an activity-meter device. Obtained findings revealed that none of the test compounds (10 mg/kg) were effective in the tail-clip and hot-plate tests. However, compounds 4b, 4c, 4f, 4 h, and 4 k in the serial shortened the paw-licking times of mice in the late phase of the formalin test indicating that these compounds had peripherally-mediated antinociceptive effects. The same compounds, moreover, showed potent anti-inflammatory effects by significantly reducing paw edema of rats in the inflammation tests. To provide an approach to pharmacological findings regarding possible mechanisms of action, the binding modes of the most active compounds were investigated by in silico approaches. The results of molecular docking studies indicated that the anti-inflammatory and analgesic activities of the compounds might be related to the inhibition of both COX-1 and COX-2 isoenzymes. Findings obtained from in silico studies showed that 4 k, which was chosen as a model for its analogs in the series, forms strong bindings to the basic residues (Arg120, Tyr355), side pocket loop area and deep hydrophobic regions of the enzyme. Moreover, results of the molecular dynamics simulation studies revealed that ligand-COX enzyme complexes are quite stable. Obtained results of in vivo and in silico studies are in harmony, and all together point out that compounds 4b, 4c, 4f, 4 h, and 4 k have significant anti-inflammatory and analgesic activities with good ADME profiles. The potential of the derivatives, whose pharmacological activities were revealed for the first time in this study, as anti-inflammatory and analgesic drug candidates, needs to be evaluated through comprehensive clinical studies.
Collapse
Affiliation(s)
- Nazlı Turan Yücel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26100, Turkey
| | - Abd Al Rahman Asfour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26100, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26100, Turkey; Pharmacy Services, Vocational School of Health Services, Bilecik Seyh Edebali University, Bilecik 11100, Turkey.
| | - Cevşen Yazıcı
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26100, Turkey
| | - Ümmühan Kandemir
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26100, Turkey; Department of Medical Services and Techniques, Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik 11100, Turkey
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26100, Turkey
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26100, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26100, Turkey
| |
Collapse
|
3
|
Yurttaş L, Evren AE, AlChaib H, Temel HE, Akalin Çiftçi G. Synthesis, molecular docking, and molecular dynamic simulation studies of new 1,3,4-thiadiazole derivatives as potential apoptosis inducers in A549 lung cancer cell line. J Biomol Struct Dyn 2024:1-16. [PMID: 38166545 DOI: 10.1080/07391102.2023.2300125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/22/2023] [Indexed: 01/04/2024]
Abstract
1,3,4-Thiadiazoles are structures that are bioisosteres of 1,3,4-oxadiazole and pyrimidine ring, which are found in the structure of many drugs and anticancer active newly studied derivatives. In the past, high effect profiles have been observed in many molecules created, based on the anticancer effects of the 2-amino-1,3,4-thiadiazole (NSC 4728) molecule and acetazolamide molecules. Focusing on these molecules and evaluating them in terms of mechanistic effects, twelve new N-[5-((3,5-dichlorophenoxy) methyl]-1,3,4-thiadiazole derivatives (3a-3i) were synthesized and their biological activities were investigated in lung cancer cells. The anticancer effects of the compounds were evaluated on the A549 and L929 cell lines. Compound 3f, namely 2-[(5-chlorobenzotiyazol-2-yl)thio]-N-[5-[(3,5-dichlorophenoxy)methyl]-1,3,4-thiadiazol-2-yl]acetamide, showed better activity than cisplatin, exhibiting high inhibitory potency (IC50: <0.98 μg/mL) and selectivity against A549 cell line even at the lowest concentration tested. Compounds 3c, 3f, and 3h with the lowest IC50 values of the compounds exhibited an excellent percentage of apoptosis between 72.48 and 91.95% compared to cisplatin. The caspase-3 activation and mitochondrial membrane potential change of the aforementioned three compounds were also studied. Moreover, matrix metalloproteinase-9 (MMP-9) inhibition potential of all final compounds was also investigated and IC50 values for compounds 3b and 3g were identified as 154.23 and 107.28 µM. Molecular docking and molecular dynamic simulation studies for MMP-9 enzyme inhibition were realized on these compounds and the nitrogen atoms of amide and thiadiazole moieties' ascertained that they play a key role in chelating with Zn metal, at the same time, (thio)ether moieties allow conformational change resulting in the ligand can make more stable contacts.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Şeyh Edebali University, Bilecik, Turkey
| | - Huda AlChaib
- Department of Medical Biochemistry, Faculty of Health Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Halide Edip Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülşen Akalin Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
4
|
Yurttaş L, Evren AE, Kubilay A, Aksoy MO, Temel HE, Akalın Çiftçi G. Synthesis of Some New 1,3,4-Oxadiazole Derivatives and Evaluation of Their Anticancer Activity. ACS OMEGA 2023; 8:49311-49326. [PMID: 38162760 PMCID: PMC10753699 DOI: 10.1021/acsomega.3c07776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
In this work, some new 2-[(5-((2-acetamidophenoxy)methyl)-1,3,4-oxadiazol-2-yl)thio]acetamide derivatives (4a-4l) were synthesized and studied for their anticancer activity. Twelve new compounds were tested on the A549 human lung cancer cell line, C6 rat glioma cell line, and L929 murine fibroblast cell line. Compounds 4f, 4i, 4k, and 4l (IC50: 1.59-7.48 μM), and especially 4h (IC50: <0.14 μM), exhibited excellent cytotoxic profile on A549 with selectivity. Compounds 4g and 4h showed remarkable antiproliferative activity on the C6 cell line with IC50 values of 8.16 and 13.04 μM, respectively. The compounds with the lowest IC50 value on the A549 cell line (4f, 4h, 4i, 4k, and 4l) were further studied to determine the mechanism of action. These compounds were found to induce apoptosis with a higher ratio (16.10-21.54%) than that of the standard drug cisplatin (10.07%). Compound 4f displayed mitochondrial membrane depolarization and caspase-3 activation at most, whereas compounds 4h (89.66%) and 4i (78.78%) had outstanding retention rates in the G0/G1phase of the cell cycle (cisplatin 74.75%). Compounds 4f, 4g, 4h, and 4l exhibited matrix metalloproteinase-9 (MMP-9) inhibition higher than 75% at 100 μg/mL; even IC50 values were found to be 1.65 and 2.55 μM for 4h and 4l. In addition, in silico physicochemical properties of the compounds and molecular docking interaction of compound 4h on the MMP-9 enzyme were evaluated; the desired and expected results were obtained.
Collapse
Affiliation(s)
- Leyla Yurttaş
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Asaf Evrim Evren
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
- Department
of Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, 11000 Bilecik, Turkey
| | - Aslıhan Kubilay
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Mehmet Onur Aksoy
- Faculty
of Pharmacy, Department of Biochemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Halide Edip Temel
- Faculty
of Pharmacy, Department of Biochemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Faculty
of Pharmacy, Department of Biochemistry, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|