1
|
Farrokhzad R, Seyedalipour B, Baziyar P, Hosseinkhani S. Insight Into Factors Influencing the Aggregation Process in Wild-Type and P66R Mutant SOD1: Computational and Spectroscopic Approaches. Proteins 2025; 93:885-907. [PMID: 39643934 DOI: 10.1002/prot.26765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Disturbances in metal ion homeostasis associated with amyotrophic lateral sclerosis (ALS) have been described for several years, but the exact mechanism of involvement is not well understood. To elucidate the role of metalation in superoxide dismutase (SOD1) misfolding and aggregation, we comprehensively characterized the structural features (apo/holo forms) of WT-SOD1 and P66R mutant in loop IV. Using computational and experimental methodologies, we assessed the physicochemical properties of these variants and their correlation with protein aggregation at the molecular level. Modifications in apo-SOD1 compared to holo-SOD1 were more pronounced in flexibility, stability, hydrophobicity, and intramolecular interactions, as indicated by molecular dynamics simulations. The enzymatic activities of holo/apo-WT SOD1 were 1.30 and 1.88-fold of the holo/apo P66R mutant, respectively. Under amyloid-inducing conditions, decreased ANS fluorescence intensity in the apo-form relative to the holo-form suggested pre-fibrillar species and amyloid aggregate growth due to occluded hydrophobic pockets. FTIR spectroscopy revealed that apo-WT-SOD1 and apo-P66R exhibited a mixture of parallel and intermolecular β-sheet structures, indicative of aggregation propensity. Aggregate species were identified using TEM, Congo red staining, and ThT/ANS fluorescence spectroscopy. Thermodynamic analyses with GdnHCl demonstrated that metal deficit, mutation, and intramolecular disulfide bond reduction are essential for initiating SOD1 misfolding and aggregation. These disruptions destabilize the dimer-monomer equilibrium, promoting dimer dissociation into monomers and decreasing the thermodynamic stability of SOD1 variants, thus facilitating amyloid/amorphous aggregate formation. Our findings offer novel insights into protein aggregation mechanisms in disease pathology and highlight potential therapeutic strategies against toxic protein aggregation, including SOD1.
Collapse
Affiliation(s)
- Roghayeh Farrokhzad
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Hosseini Faradonbeh SM, Seyedalipour B, Keivan Behjou N, Rezaei K, Baziyar P, Hosseinkhani S. Structural insights into SOD1: from in silico and molecular dynamics to experimental analyses of ALS-associated E49K and R115G mutants. Front Mol Biosci 2025; 12:1532375. [PMID: 40070688 PMCID: PMC11893412 DOI: 10.3389/fmolb.2025.1532375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025] Open
Abstract
Protein stability is a crucial characteristic that influences both protein activity and structure and plays a significant role in several diseases. Cu/Zn superoxide dismutase 1 (SOD1) mutations serve as a model for elucidating the destabilizing effects on protein folding and misfolding linked to the lethal neurological disease, amyotrophic lateral sclerosis (ALS). In the present study, we have examined the structure and dynamics of the SOD1 protein upon two ALS-associated point mutations at the surface (namely, E49K and R115G), which are located in metal-binding loop IV and Greek key loop VI, respectively. Our analysis was performed through multiple algorithms on the structural characterization of the hSOD1 protein using computational predictions, molecular dynamics (MD) simulations, and experimental studies to understand the effects of amino acid substitutions. Predictive results of computational analysis predicted the deleterious and destabilizing effect of mutants on hSOD1 function and stability. MD outcomes also indicate that the mutations result in structural destabilization by affecting the increased content of β-sheet structures and loss of hydrogen bonds. Moreover, comparative intrinsic and extrinsic fluorescence results of WT-hSOD1 and mutants indicated structural alterations and increased hydrophobic surface pockets, respectively. As well, the existence of β-sheet-dominated structures was observed under amyloidogenic conditions using FTIR spectroscopy. Overall, our findings suggest that mutations in the metal-binding loop IV and Greek key loop VI lead to significant structural and conformational changes that could affect the structure and stability of the hSOD1 molecule, resulting in the formation of toxic intermediate species that cause ALS.
Collapse
Affiliation(s)
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Nasrin Keivan Behjou
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Kimiya Rezaei
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Kouhi ZH, Seyedalipour B, Hosseinkhani S, Chaichi MJ. Bisdemethoxycurcumin, a novel potent polyphenolic compound, effectively inhibits the formation of amyloid aggregates in ALS-associated hSOD1 mutant (L38R). Int J Biol Macromol 2024; 282:136701. [PMID: 39461630 DOI: 10.1016/j.ijbiomac.2024.136701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/29/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Protein misfolding is a biological process that leads to protein aggregation. Anomalous misfolding and aggregation of human superoxide dismutase (hSOD1) into amyloid aggregates is a characteristic feature of amyotrophic lateral sclerosis (ALS), a neurodegenerative illness. Thus, focusing on the L38R mutant may be a wise decision to comprehend the SOD1 disease process in ALS. We suggest that Bisdemethoxycurcumin (BDMC) may be a strong anti-amyloidogenic polyphenol against L38R mutant aggregation. Protein stability, hydrophobicity, and flexibility were altered when BDMC was bound to the L38R mutant, as shown by molecular dynamic (MD) simulations and molecular docking. FTIR data shows α-Helix dominance in BDMC-containing samples, with reduced β-sheet and disordered peaks, indicating the decrease of aggregate species. ThT aggregation kinetics curves show BDMC reduces L38R mutant aggregation dose-dependently, with higher BDMC concentrations yielding greater reductions. TEM images showed various quantities of amorphous aggregates, but notably, 60 μM BDMC markedly reduced aggregate density, underscoring BDMC's inhibitory effect. Hemolysis tests revealed aggregate species in BDMC-treated samples were less toxic than in L38R mutant samples alone at the same concentrations and exposure times. Overall, BDMC has substantial potential to develop highly effective inhibitors that mitigate the risk of fatal ALS.
Collapse
Affiliation(s)
- Zeinab Haghgoo Kouhi
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Chaichi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
4
|
Ashkaran F, Seyedalipour B, Baziyar P, Hosseinkhani S. Mutation/metal deficiency in the "electrostatic loop" enhanced aggregation process in apo/holo SOD1 variants: implications for ALS diseases. BMC Chem 2024; 18:177. [PMID: 39300574 PMCID: PMC11411779 DOI: 10.1186/s13065-024-01289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Despite the many mechanisms it has created to prevent unfolding and aggregation of proteins, many diseases are caused by abnormal folding of proteins, which are called misfolding diseases. During this process, proteins undergo structural changes and become stable, insoluble beta-sheet aggregates called amyloid fibrils. Mutations/disruptions in metal ion homeostasis in the ALS-associated metalloenzyme superoxide dismutase (SOD1) reduce conformational stability, consistent with the protein aggregation hypothesis for neurodegenerative diseases. However, the exact mechanism of involvement is not well understood. Hence, to understand the role of mutation/ metal deficiency in SOD1 misfolding and aggregation, we investigated the effects of apo/holo SOD1 variants on structural properties using biophysical/experimental techniques. The MD results support the idea that the mutation/metal deficiency can lead to a change in conformation. The increased content of β-sheet structures in apo/holo SOD1 variants can be attributed to the aggregation tendency, which was confirmed by FTIR spectroscopy and dictionary of secondary structure in proteins (DSSP) results. Thermodynamic studies of GdnHCl showed that metal deficiency/mutation/intramolecular S-S reduction together are required to initiate misfolding/aggregation of SOD1. The results showed that apo/holo SOD1 variants under destabilizing conditions induced amyloid aggregates at physiological pH, which were detected by ThT/ANS fluorescence, as well as further confirmation of amyloid/amorphous species by TEM. This study confirms that mutations in the electrostatic loop of SOD1 lead to structural abnormalities, including changes in hydrophobicity, reduced disulfide bonds, and an increased propensity for protein denaturation. This process facilitates the formation of amyloid/amorphous aggregates ALS-associated.
Collapse
Affiliation(s)
- Faezeh Ashkaran
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|