1
|
Xu L, Song X, Yao D, Wang C, Yao X, Li Z. Dynamic migration of phenolics in microwaved combined cooked sorghum: Focus on the polyphenols interact with starch/protein. Food Chem X 2025; 27:102342. [PMID: 40231121 PMCID: PMC11995043 DOI: 10.1016/j.fochx.2025.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025] Open
Abstract
Based on the perspective of whole sorghum food, the polyphenols migration process was analyzed during microwave-combined cooking treatment utilizing wide metabolomics, simulated reactions, and molecular docking. Microstructure confirmed that microwave broke the grain cells, resulting in the elevated polyphenols contents. Flavonoids were significantly released by microwave (e.g. arbutin, eriodictyol-7-o-glucoside, narirutin, and naringenin-7-o-glucoside), which regulated the antioxidant activity of sorghum. Simulated co-gelatinization reaction revealed that polyphenols interacted non-covalently with starch, resulting in higher levels of polyphenols being retained during cooking (711.12 mg GAE/100 g). Molecular docking results exhibited that 6 flavonoids could also bind to the kafirin via hydrogen bonds and hydrophobic interaction during cooking. Meanwhile, the γ-mangostin also possessed stabilized root-mean-square deviation and outstanding binding free energies. The effective retention of bioactive components under synergetic microwave and cooking treatment highlights the potential of natural ingredients in food processing, promoting a more natural approach to modern cereal nutrition.
Collapse
Affiliation(s)
- Lei Xu
- College of Food Science, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Xuejian Song
- College of Food Science, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Di Yao
- College of Food Science, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Heilongjiang, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Heilongjiang, Daqing 163319, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
| | - Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing 163319, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Heilongjiang, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Heilongjiang, Daqing 163319, China
| |
Collapse
|
2
|
Xu B, Zhang HL, Shen B, Wu JM, Shi MT, Li XD, Guo Q. Identification biomarkers and therapeutic targets of disulfidptosis-related in rheumatoid arthritis via bioinformatics, molecular dynamics simulation, and experimental validation. Sci Rep 2025; 15:8779. [PMID: 40082645 PMCID: PMC11906621 DOI: 10.1038/s41598-025-93656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
The relationship between disulfidptosis and rheumatoid arthritis (RA) remains unclear. We aimed to identified biomarkers disulfidptosis-related in RA and revealed potential targeted drugs. Two microarray datasets (GSE93272, GSE45291) related to RA were downloaded from the Gene Expression Omnibus (GEO) database. Disulfidptosis-related genes(DRGs) were extracted from FerrDb database. GSE93272 was used to identify DRGs, and GSE45291 was used to verify results. Multivariate Cox regression analysis was used to identify candidate disulfidptosis-associated hub genes. The differentiated values of DRGs were determined by receiver operator characteristic (ROC) monofactor analysis to judge their potential quality as biomarkers. RT-qPCR were used to validate the expression of hub genes. Additionally, we analyzed the connection between the hub genes and the filtration of immune cells in RA. We made predictions about the miRNAs, TFs and possible drugs that regulate the hub genes. Subsequently, molecular docking was carried out to predict the combination of drugs with hub targets. Finally, molecular dynamics simulation was conducted to further verify the findings. Oxoacyl-ACP Synthase Mitochondrial(OXSM) was identified as a biomarker with high diagnostic value, and an RA diagnostic model based on OXSM for a single gene was constructed. The model showed high accuracy in distinguishing RA and healthy controls (AUC = 0.802) and was validated by external datasets, showing excellent diagnostic power (AUC = 0.982). Twelve potential drugs against RA were recognized by comparative toxicogenomics database (CTD). Molecular docking results showed that ICG 001 had the highest binding affinity to OXSM, and molecular dynamics simulations confirmed the stability of this complexes. Furthermore, CIBERSORT analysis showed a significant correlation between immune cell infiltration and OXSM, and a regulatory network of TFs-gene-miRNAs comprising 8 miRNAs and 34 TFs was identified. Finally, the RT-qPCR results showed that OXSM was significantly increased in the peripheral blood of RA patients compared with healthy controls, consistent with the bioinformatics analysis. These studies suggest that OXSM may be a potential biomarker and therapeutic target for diagnosing RA, and ICG 001 may be a potential drug for RA. These findings may provide new avenues for the effective diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Bin Xu
- Department of Clinical Laboratory, Anshun City People's Hospital, Guizhou, 561000, China.
| | - Hai Long Zhang
- Department of Clinical Laboratory, Anshun City People's Hospital, Guizhou, 561000, China
| | - Bo Shen
- Department of Clinical Laboratory, Anshun City People's Hospital, Guizhou, 561000, China
| | - Jia Mei Wu
- Department of Clinical Laboratory, Anshun City People's Hospital, Guizhou, 561000, China
| | - Meng Ting Shi
- Department of Clinical Laboratory, Anshun City People's Hospital, Guizhou, 561000, China
| | - Xiao Duo Li
- Department of Clinical Laboratory, Anshun City People's Hospital, Guizhou, 561000, China.
| | - Qiong Guo
- Anshun City Xixiu District Agriculture Bureau, Guizhou, 561000, China.
| |
Collapse
|
3
|
Abusharkh KAN, Comert Onder F, Çınar V, Onder A, Sıkık M, Hamurcu Z, Ozpolat B, Ay M. Novel benzothiazole/benzothiazole thiazolidine-2,4-dione derivatives as potential FOXM1 inhibitors: In silico, synthesis, and in vitro studies. Arch Pharm (Weinheim) 2024:e2400504. [PMID: 39318080 DOI: 10.1002/ardp.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
The oncogenic transcription factor FOXM1 overexpressed in breast and other solid cancers, is a key driver of tumor growth and progression through complex interactions, making it an attractive molecular target for the development of targeted therapies. Despite the availability of small-molecule inhibitors, their limited specificity, potency, and efficacy hinder clinical translation. To identify effective FOXM1 inhibitors, we synthesized novel benzothiazole derivatives (KC10-KC13) and benzothiazole hybrids with thiazolidine-2,4-dione (KC21-KC36). These compounds were evaluated for FOXM1 inhibition. Molecular docking and molecular dynamics simulation analysis revealed their binding patterns and affinities for the FOXM1-DNA binding domain. The interactions with key amino acids such as Asn283, His287, and Arg286, crucial for FOXM1 inhibition, have been determined with the synthesized compounds. Additionally, the molecular modeling study indicated that KC12, KC21, and KC30 aligned structurally and interacted similarly to the reference compound FDI-6. In vitro studies with the MDA-MB-231 breast cancer cell line demonstrated that KC12, KC21, and KC30 significantly inhibited FOXM1, showing greater potency than FDI-6, with IC50 values of 6.13, 10.77, and 12.86 µM, respectively, versus 20.79 µM for FDI-6. Our findings suggest that KC12, KC21, and KC30 exhibit strong activity as FOXM1 inhibitors and may be suitable for in vivo animal studies.
Collapse
Affiliation(s)
- Khaled A N Abusharkh
- Department of Chemistry, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, Al-Quds University, East Jerusalem, Palestine
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Venhar Çınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Alper Onder
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Merve Sıkık
- Department of Medical System Biology, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Mehmet Ay
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
4
|
Abusharkh KAN, Comert Onder F, Çınar V, Hamurcu Z, Ozpolat B, Ay M. A drug repurposing study identifies novel FOXM1 inhibitors with in vitro activity against breast cancer cells. Med Oncol 2024; 41:188. [PMID: 38918225 PMCID: PMC11199234 DOI: 10.1007/s12032-024-02427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
FOXM1, a proto-oncogenic transcription factor, plays a critical role in cancer development and treatment resistance in cancers, particularly in breast cancer. Thus, this study aimed to identify potential FOXM1 inhibitors through computational screening of drug databases, followed by in vitro validation of their inhibitory activity against breast cancer cells. In silico studies involved pharmacophore modeling using the FOXM1 inhibitor, FDI-6, followed by virtual screening of DrugBank and Selleckchem databases. The selected drugs were prepared for molecular docking, and the crystal structure of FOXM1 was pre-processed for docking simulations. In vitro studies included MTT assays to assess cytotoxicity, and Western blot analysis to evaluate protein expression levels. Our study identified Pantoprazole and Rabeprazole as potential FOXM1 inhibitors through in silico screening and molecular docking. Molecular dynamics simulations confirmed stable interactions of these drugs with FOXM1. In vitro experiments showed both Pantoprazole and Rabeprazole exhibited strong FOXM1 inhibition at effective concentrations and that showed inhibition of cell proliferation. Rabeprazole showed the inhibitor activity at 10 µM in BT-20 and MCF-7 cell lines. Pantoprazole exhibited FOXM1 inhibition at 30 µM and in BT-20 cells and at 70 µM in MCF-7 cells, respectively. Our current study provides the first evidence that Rabeprazole and Pantoprazole can bind to FOXM1 and inhibit its activity and downstream signaling, including eEF2K and pEF2, in breast cancer cells. These findings indicate that rabeprazole and pantoprazole inhibit FOXM1 and breast cancer cell proliferation, and they can be used for FOXM1-targeted therapy in breast or other cancers driven by FOXM1.
Collapse
Affiliation(s)
- Khaled A N Abusharkh
- Department of Chemistry, School of Graduate Studies, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Türkiye
- Department of Chemistry, Faculty of Science, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Türkiye
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, Al-Quds University, Jerusalem, 20002, Palestine
| | - Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Türkiye.
| | - Venhar Çınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Türkiye
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Türkiye
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| | - Mehmet Ay
- Department of Chemistry, Faculty of Science, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Türkiye.
| |
Collapse
|