1
|
Zhu G, Wang L, Wang H, Chen Z, Li X, Ji Y, Yu J, Song P. Study on the Effects of Tannase on the De Astringency of Pomegranate Juice. Foods 2025; 14:985. [PMID: 40231994 PMCID: PMC11941192 DOI: 10.3390/foods14060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Reducing the punicalagin content is an effective strategy for eliminating the astringency of pomegranate juice. In this study, pomegranate juice was used as the raw material, and tannase was applied to convert punicalagin into ellagic acid and gallic acid. The effects of tannase concentration, reaction time, and temperature on juice deastringency were evaluated, along with the antioxidant and physicochemical properties of the treated juice. The results demonstrated that, under optimal conditions (33.9 U/100 mL tannase, 30 °C, 90 min reaction time), the punicalagin content decreased by 27.8%, while the ellagic acid and gallic acid levels increased by 24.2% and 32.3%, respectively, effectively reducing the juice's astringency. Under these conditions, the total phenolic content reached 110 mg/100 g, with a free radical scavenging capacity of 69.8%, significantly enhancing the juice's antioxidant properties. These results suggest that tannase treatment of pomegranate juice enhances the polyphenol content, thereby improving its health benefits without compromising the product quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Yu
- Department of Food Science and Engineering, Nanjing Normal University, No.1 Wenyuan Road, Nanjing 210023, China; (G.Z.); (L.W.); (H.W.); (Z.C.); (X.L.); (Y.J.)
| | - Ping Song
- Department of Food Science and Engineering, Nanjing Normal University, No.1 Wenyuan Road, Nanjing 210023, China; (G.Z.); (L.W.); (H.W.); (Z.C.); (X.L.); (Y.J.)
| |
Collapse
|
2
|
Popovici LF, Brinza I, Gatea F, Badea GI, Vamanu E, Oancea S, Hritcu L. Enhancement of Cognitive Benefits and Anti-Anxiety Effects of Phytolacca americana Fruits in a Zebrafish ( Danio rerio) Model of Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2025; 14:97. [PMID: 39857431 PMCID: PMC11762548 DOI: 10.3390/antiox14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Phytolacca americana fruits exhibit a wide range of biological activities, including antimicrobial, anti-inflammatory, and anticancer properties. This study aims to investigate the phenolic profile of hydroethanolic extracts from both fresh (PEC) and dried (PEU) fruits of P. americana using high-performance liquid chromatography (HPLC) and to evaluate their impact on anxiety-like behavior, memory, oxidative stress, and cholinergic status in zebrafish (Danio rerio, Tübingen strain) treated with scopolamine (SCO, 100 μM). Acute administration of PEC and PEU (0.1, 0.5, and 1 mg/L) was conducted for one hour per day. In silico analyses were performed to evaluate the pharmacokinetic characteristics of the phenolic compounds discerned in the two extracts, using platforms such as SwissAdme, Molinspiration, ProToX-III, AdmetLab 3.0, PKCSM, and PASS. Anxiety-like behavior and memory performance were assessed through specific behavioral assays, including the novel tank test (NTT), light/dark test (LD), novel approach test (NAT), Y-maze, and novel object recognition (NOR). Subsequently, the activity of acetylcholinesterase (AChE) and the extent of oxidative stress in the zebrafish brain were investigated. Our findings suggest that both PEC and PEU possess anxiolytic effects, alleviating SCO-induced anxiety and enhancing cognitive performance in amnesic zebrafish. Furthermore, these extracts demonstrated the ability to mitigate cholinergic deficits by inhibiting AChE activity and supporting antioxidant defense mechanisms through increased activity of antioxidant enzymes and reduced lipid and protein peroxidation. These results highlight the potential use of P. americana fruit extracts in managing anxiety and cognitive impairments related to dementia conditions.
Collapse
Affiliation(s)
- Lucia-Florina Popovici
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 7–9 Ion Ratiu Street, 550024 Sibiu, Romania;
| | - Ion Brinza
- Faculty of Sciences, “Lucian Blaga” University of Sibiu, 7–9 Ion Ratiu Street, 550024 Sibiu, Romania;
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania; (F.G.); (G.I.B.)
| | - Georgiana Ileana Badea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania; (F.G.); (G.I.B.)
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 011464 Bucharest, Romania;
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 7–9 Ion Ratiu Street, 550024 Sibiu, Romania;
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| |
Collapse
|
3
|
Benslama O, Lekmine S, Moussa H, Tahraoui H, Ola MS, Zhang J, Amrane A. Silymarin as a Therapeutic Agent for Hepatocellular Carcinoma: A Multi-Approach Computational Study. Metabolites 2025; 15:53. [PMID: 39852395 PMCID: PMC11767256 DOI: 10.3390/metabo15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent and lethal form of liver cancer with limited treatment options. Silymarin, a flavonoid complex derived from milk thistle, has shown promise in liver disease treatment due to its antioxidant, anti-inflammatory, and anticancer properties. This study aims to explore the therapeutic potential of silymarin in HCC through a comprehensive in silico approach. METHODS This study employed a network pharmacology approach to identify key molecular targets of silymarin in HCC. The Genecards and Metascape databases were used for target identification and functional annotation. Molecular docking analysis was conducted on the primary silymarin components against VEGFA and SRC proteins, which are critical in HCC progression. MD simulations followed to assess the stability and interactions of the docked complexes. RESULTS Network pharmacology analysis identified several key molecular targets and pathways implicated in HCC. The molecular docking results revealed strong binding affinities of silymarin components to VEGFA and SRC, with Silybin A and Isosilybin B showing the highest affinities. MD simulations confirmed the stability of these interactions, indicating potential inhibitory effects on HCC progression. CONCLUSIONS This study provides a comprehensive in silico evaluation of silymarin's therapeutic potential in HCC. The findings suggest that silymarin, particularly its components Silybin A and Isosilybin B, may effectively target VEGFA and SRC proteins, offering a promising avenue for HCC treatment. Further experimental validation is warranted to confirm these findings and facilitate the development of silymarin-based therapeutics for HCC.
Collapse
Affiliation(s)
- Ouided Benslama
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Hamza Moussa
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
| | - Hichem Tahraoui
- Laboratoire de Génie des Procédés Chimiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas, Sétif-1, Sétif 19000, Algeria
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria
- Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| |
Collapse
|
4
|
Lekmine S, Benslama O, Bensalah B, Touzout N, Moussa H, Tahraoui H, Ola MS, Hafsa H, Zhang J, Amrane A. Bioactive Phenolics of Hyoscyamus muticus L. Subsp. Falezlez: A Molecular and Biochemical Approach to Antioxidant and Urease Inhibitory Activities. Int J Mol Sci 2025; 26:370. [PMID: 39796225 PMCID: PMC11719793 DOI: 10.3390/ijms26010370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
This study examines the chemical composition, antioxidant properties, and urease inhibitory effects of Hyoscyamus muticus L. subsp. falezlez (Coss.) Maire. Using LC-ESI-MS/MS, 19 distinct phenolic compounds were identified, with chlorogenic acid being the most abundant. The ethanol extract demonstrated notable antioxidant activity, highlighting its potential for therapeutic use. Urease inhibition assays revealed a remarkable 91.35% inhibition by the H. muticus extract, with an IC50 value of 5.6 ± 1.20 μg/mL, indicating its promising role in addressing conditions linked to urease activity. Molecular docking studies further investigated the interaction between H. muticus phenolic compounds and urease, identifying hyperoside as a leading candidate, with a binding energy of -7.9 kcal/mol. Other compounds, such as rutin, luteolin, apigenin, kaempferol, hesperetin, chlorogenic acid, and rosmarinic acid, also demonstrated significant binding affinities, suggesting their potential to disrupt urease function. These findings highlight the therapeutic potential of H. muticus as a source of natural bioactive compounds, offering promising avenues for the development of novel treatments for urease-related disorders and oxidative stress.
Collapse
Affiliation(s)
- Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules, and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Bachir Bensalah
- Department of Biology, Faculty of Natural and Life Sciences, University of Ghardaia, Ghardaia 47000, Algeria
| | - Nabil Touzout
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria
| | - Hamza Moussa
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria
- Laboratoire de Génie des Procédés Chimiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas, Sétif-1, Sétif 19000, Algeria
- Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haroun Hafsa
- Laboratory of Reaction Engineering, USTHB, BP 32, Algiers 16111, Algeria
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| |
Collapse
|
5
|
Lekmine S, Benslama O, Ola MS, Touzout N, Moussa H, Tahraoui H, Hafsa H, Zhang J, Amrane A. Preliminary Data on Silybum marianum Metabolites: Comprehensive Characterization, Antioxidant, Antidiabetic, Antimicrobial Activities, LC-MS/MS Profiling, and Predicted ADMET Analysis. Metabolites 2025; 15:13. [PMID: 39852356 PMCID: PMC11768079 DOI: 10.3390/metabo15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Silybum marianum extract, obtained via microwave-enhanced extraction, was evaluated for its antioxidant, antidiabetic, and antimicrobial activities to explore its therapeutic potential. METHODS The extraction was performed using microwave-enhanced techniques, and LC-MS/MS was employed to profile the metabolites in the extract. Total phenolic and flavonoid contents were quantified using spectrophotometric methods. Antioxidant activity was assessed using DPPH, ABTS, CUPRAC, Phenanthroline, and FRAP assays. Enzyme inhibition assays were conducted to evaluate antidiabetic activity against α-glucosidase and α-amylase. Antimicrobial activity was determined using the disc diffusion method, and in silico ADMET and drug-likeness analyses were performed for key metabolites. RESULTS The extract contained 251.2 ± 1.2 mg GAE/g of total phenolics and 125.1 ± 1.6 mg QE/g of total flavonoids, with 33 metabolites identified, including phenolic acids, tannins, flavonoids, and flavolignans. Strong antioxidant activity was observed, with IC50 values of 19.2 ± 2.3 μg/mL (DPPH), 7.2 ± 1.7 μg/mL (ABTS), 22.2 ± 1.2 μg/mL (CUPRAC), 35.2 ± 1.8 μg/mL (Phenanthroline), and 24.1 ± 1.2 μg/mL (FRAP). Antidiabetic effects were significant, with IC50 values of 18.1 ± 1.7 μg/mL (α-glucosidase) and 26.5 ± 1.3 μg/mL (α-amylase). Antimicrobial activity demonstrated inhibition zones of 8.9 ± 1.1 mm (Bacillus subtilis), 12.6 ± 1.6 mm (Escherichia coli), 8.2 ± 1.2 mm (Fusarium oxysporum), and 9.2 ± 1.1 mm (Aspergillus niger). In silico analyses showed high absorption, favorable metabolism and excretion, and minimal toxicity, with no hERG channel inhibition or hepatotoxicity. CONCLUSIONS The comprehensive results highlight the significant antioxidant, antidiabetic, and antimicrobial activities of S. marianum extract, suggesting its potential for therapeutic and preventive applications.
Collapse
Affiliation(s)
- Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules, and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nabil Touzout
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria (H.T.)
| | - Hamza Moussa
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurance Qualité (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, Bouira 10000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Médéa 26000, Algeria (H.T.)
- Laboratoire de Génie des Procédés Chimiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas, Sétif-1, Sétif 19000, Algeria
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| | - Haroun Hafsa
- Laboratory of Reaction Engineering, USTHB, BP 32, Algiers 16111, Algeria
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, 35000 Rennes, France
| |
Collapse
|
6
|
Moussa H, Hamid S, Mameri A, Lekmine S, Tahraoui H, Kebir M, Touzout N, Dahmoune F, Ola MS, Zhang J, Amrane A. From Green Chemistry to Healthy Environments: Silver Nanoparticles as a Dual Antioxidant and Antibacterial Agents for Advancing Biomedicine and Sustainable Wastewater Treatment. Bioengineering (Basel) 2024; 11:1205. [PMID: 39768025 PMCID: PMC11673432 DOI: 10.3390/bioengineering11121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The green synthesis of silver nanoparticles (AgNPs) using plant extracts is an eco-friendly method with potential for biomedical and environmental applications. This study aims to synthesize silver nanoparticles (SO-AgNPs) using Salvia officinalis L. extract and evaluate their antioxidant and antibacterial properties, positioning them as candidates for applications in sustainable biomedicine and wastewater treatment. S. officinalis L. extract was used to synthesize AgNPs under optimized conditions, with a 10% extract/AgNO₃ ratio and a reaction time of 180 min. The SO-AgNPs were characterized using ATR-FTIR, XRD, SEM, DLS, and Zeta potential analysis. The antioxidant activity of the extract and SO-AgNPs was evaluated using ABTS+• and DPPH• radical scavenging assays. Antibacterial activity was tested against 11 bacterial strains and bacteria isolated from industrial effluent, with minimal inhibitory concentrations (MIC) determined for both the extract and SO-AgNPs. The SO-AgNPs demonstrated potent antioxidant activity, with IC₅₀ values of 0.233 mg/mL and 0.305 mg/mL in the ABTS+• assay, and 0.173 mg/mL and 0.185 mg/mL in the DPPH• assay for the extract and SO-AgNPs, respectively. Antibacterial testing showed MIC values of 0.25 mg/mL for SO-AgNPs and between 3.12 and 6.25 mg/mL for S. officinalis L. extract against E. coli, P. aeruginosa, A. baumannii, MRSA, B. cereus, and S. epidermidis. For bacteria isolated from industrial effluent, the MIC values were 0.125 mg/mL for SO-AgNPs and 0.5 mg/mL for the extract. This study highlights the dual antioxidant and antibacterial capabilities of S. officinalis L. extract and SO-AgNPs, demonstrating their potential for use in both biomedical and environmental applications, including wastewater treatment.
Collapse
Affiliation(s)
- Hamza Moussa
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance (LGVRNAQ), Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira 10000, Algeria; (H.M.); (A.M.)
- Department of Biology, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira 10000, Algeria;
| | - Sarah Hamid
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Amal Mameri
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance (LGVRNAQ), Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira 10000, Algeria; (H.M.); (A.M.)
- Department of Biology, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira 10000, Algeria;
| | - Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria; (H.T.) (N.T.)
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, F-35000 Rennes, France;
| | - Mohammed Kebir
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Tipaza 42004, Algeria;
- Unité de Recherche en Analyses Physico-Chimiques des Milieux Fluides et Sols–(URAPC-MFS/CRAPC), 11, Chemin Doudou Mokhtar, Ben Aknoun 16100, Algeria
| | - Nabil Touzout
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria; (H.T.) (N.T.)
| | - Farid Dahmoune
- Department of Biology, Faculty of Natural and Life Sciences and Earth Sciences, University of Bouira, Bouira 10000, Algeria;
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, F-35000 Rennes, France;
| |
Collapse
|
7
|
Lekmine S, Benslama O, Tahraoui H, Ola MS, Laouani A, Kadi K, Martín-García AI, Ali A. Anti-Cholinergic Effects of the Phenolic Extract from the Astragalus crenatus Plant: A Computational and Network Pharmacology Study. Pharmaceuticals (Basel) 2024; 17:348. [PMID: 38543134 PMCID: PMC10976237 DOI: 10.3390/ph17030348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Investigations into cholinesterase inhibition have received attention from researchers in recent years for the treatment of Alzheimer's disease. Cholinesterase enzymes, namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), hold pivotal significance in Alzheimer's disease (AD) treatment. In this study, we utilized the ethanolic extract of Astragalus crenatus followed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to separate and identify at least 21 compounds in the extract. Rosmarinic acid exhibited the highest concentration (96.675 ± 1.3 mg/g extract), succeeded by hesperidin (79.613 ± 1.2 mg/g extract), hesperetin (75.102 ± 1.4 mg/g extract), rutin (68.156 ± 1.6 mg/g extract), chlorogenic acid (67.645 ± 1.5 mg/g extract), fisetin (66.647 ± 2.3 mg/g extract), and hyperoside (63.173 ± 1.5 mg/g extract). A. crenatus extract efficiently inhibited both AChE and BChE activities in a dosage-dependent manner. Molecular docking was employed to scrutinize the anticholinesterase mechanisms of the identified phytocompounds. Notably, a network pharmacology analysis was executed for the most efficacious compound. Based on binding energies, hesperidin emerged as the most potent inhibitor against both AChE and BChE, exhibiting scores of -10.5 Kcal/mol and -9.8 Kcal/mol, respectively. Due to its dual inhibition of AChE and BChE activities, hesperidin from Astragalus crenatus holds promise for the development of novel therapeutics aimed at neurological disorders, particularly AD.
Collapse
Affiliation(s)
- Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40004, Algeria
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules, and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
- Laboratoire de Génie des Procédés Chimiques, Department of Process Engineering, University of Ferhat Abbas, Setif 19000, Algeria
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aicha Laouani
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia
- USCR Analytical Platform UHPLC-MS & Research in Medicine and Biology, Faculty of Medicine, University of Sousse, Sousse 4023, Tunisia
| | - Kenza Kadi
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40004, Algeria
| | | | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
| |
Collapse
|