1
|
Fujita Y, Miyake T, Shao X, Aoki Y, Hasegawa E, Doi M. Omeprazole Induces CYP3A4 mRNA Expression but Not CYP3A4 Protein Expression in HepaRG Cells. Biol Pharm Bull 2024; 47:1218-1223. [PMID: 38925922 DOI: 10.1248/bpb.b24-00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Unknown interactions between drugs remain the limiting factor for clinical application of drugs, and the induction and inhibition of drug-metabolizing CYP enzymes are considered the key to examining the drug-drug interaction (DDI). In this study, using human HepaRG cells as an in vitro model system, we analyzed the potential DDI based on the expression levels of CYP3A4 and CYP1A2. Rifampicin and omeprazole, the potent inducers for CYP3A4 and CYP1A2, respectively, induce expression of the corresponding CYP enzymes at both the mRNA and protein levels. We noticed that, in addition to inducing CYP1A2, omeprazole induced CYP3A4 mRNA expression in HepaRG cells. However, unexpectedly, CYP3A4 protein expression levels were not increased after omeprazole treatment. Concurrent administration of rifampicin and omeprazole showed an inhibitory effect of omeprazole on the CYP3A4 protein expression induced by rifampicin, while its mRNA induction remained intact. Cycloheximide chase assay revealed increased CYP3A4 protein degradation in the cells exposed to omeprazole. The data presented here suggest the potential importance of broadening the current DDI examination beyond conventional transcriptional induction and enzyme-activity inhibition tests to include post-translational regulation analysis of CYP enzyme expression.
Collapse
Affiliation(s)
- Yuto Fujita
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Xinyan Shao
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuto Aoki
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Emi Hasegawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
2
|
Miyake T, Inoue Y, Shao X, Seta T, Aoki Y, Nguyen Pham KT, Shichino Y, Sasaki J, Sasaki T, Ikawa M, Yamaguchi Y, Okamura H, Iwasaki S, Doi M. Minimal upstream open reading frame of Per2 mediates phase fitness of the circadian clock to day/night physiological body temperature rhythm. Cell Rep 2023; 42:112157. [PMID: 36882059 DOI: 10.1016/j.celrep.2023.112157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Body temperature in homeothermic animals does not remain constant but displays a regular circadian fluctuation within a physiological range (e.g., 35°C-38.5°C in mice), constituting a fundamental systemic signal to harmonize circadian clock-regulated physiology. Here, we find the minimal upstream open reading frame (uORF) encoded by the 5' UTR of the mammalian core clock gene Per2 and reveal its role as a regulatory module for temperature-dependent circadian clock entrainment. A temperature shift within the physiological range does not affect transcription but instead increases translation of Per2 through its minimal uORF. Genetic ablation of the Per2 minimal uORF and inhibition of phosphoinositide-3-kinase, lying upstream of temperature-dependent Per2 protein synthesis, perturb the entrainment of cells to simulated body temperature cycles. At the organismal level, Per2 minimal uORF mutant skin shows delayed wound healing, indicating that uORF-mediated Per2 modulation is crucial for optimal tissue homeostasis. Combined with transcriptional regulation, Per2 minimal uORF-mediated translation may enhance the fitness of circadian physiology.
Collapse
Affiliation(s)
- Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Yuichi Inoue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Xinyan Shao
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Takehito Seta
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Yuto Aoki
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Khanh Tien Nguyen Pham
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Junko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyō-ku, Tokyo 113-8510, Japan; Department of Cellular and Molecular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyō-ku, Tokyo 113-8510, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyō-ku, Tokyo 113-8510, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan; Division of Physiology and Neurobiology, Graduate School of Medicine, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Doi M, Shimatani H, Atobe Y, Murai I, Hayashi H, Takahashi Y, Fustin JM, Yamaguchi Y, Kiyonari H, Koike N, Yagita K, Lee C, Abe M, Sakimura K, Okamura H. Non-coding cis-element of Period2 is essential for maintaining organismal circadian behaviour and body temperature rhythmicity. Nat Commun 2019; 10:2563. [PMID: 31189882 PMCID: PMC6561950 DOI: 10.1038/s41467-019-10532-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
Non-coding cis-regulatory elements are essential determinants of development, but their exact impacts on behavior and physiology in adults remain elusive. Cis-element-based transcriptional regulation is believed to be crucial for generating circadian rhythms in behavior and physiology. However, genetic evidence supporting this model is based on mutations in the protein-coding sequences of clock genes. Here, we report generation of mutant mice carrying a mutation only at the E'-box cis-element in the promoter region of the core clock gene Per2. The Per2 E'-box mutation abolishes sustainable molecular clock oscillations and renders circadian locomotor activity and body temperature rhythms unstable. Without the E'-box, Per2 messenger RNA and protein expression remain at mid-to-high levels. Our work delineates the Per2 E'-box as a critical nodal element for keeping sustainable cell-autonomous circadian oscillation and reveals the extent of the impact of the non-coding cis-element in daily maintenance of animal locomotor activity and body temperature rhythmicity.
Collapse
Affiliation(s)
- Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan.
| | - Hiroyuki Shimatani
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Yuta Atobe
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Iori Murai
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan.,Laboratory of Molecular Brain Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Hida Hayashi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Yukari Takahashi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Jean-Michel Fustin
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Yoshiaki Yamaguchi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Hiroshi Kiyonari
- Laboratories for Animal Resource Development and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Choogon Lee
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan. .,Laboratory of Molecular Brain Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|