1
|
Zhang Y, Liu L, Zhao X, Yan S, Zeng F, Zhou D. New insight into ischemic stroke: Circadian rhythm in post-stroke angiogenesis. Front Pharmacol 2022; 13:927506. [PMID: 36016550 PMCID: PMC9395980 DOI: 10.3389/fphar.2022.927506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
The circadian rhythm is an endogenous clock system that coordinates and optimizes various physiological and pathophysiological processes, which accord with the master and the peripheral clock. Increasing evidence indicates that endogenous circadian rhythm disruption is involved in the lesion volume and recovery of ischemic stroke. As a critical recovery mechanism in post-stroke, angiogenesis reestablishes the regional blood supply and enhances cognitive and behavioral abilities, which is mainly composed of the following processes: endothelial cell proliferation, migration, and pericyte recruitment. The available evidence revealed that the circadian governs many aspects of angiogenesis. This study reviews the mechanism by which circadian rhythms regulate the process of angiogenesis and its contribution to functional recovery in post-stroke at the aspects of the molecular level. A comprehensive understanding of the circadian clock regulating angiogenesis in post-stroke is expected to develop new strategies for the treatment of cerebral infarction.
Collapse
Affiliation(s)
- Yuxing Zhang
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Desheng Zhou,
| |
Collapse
|
2
|
Takeuchi T, Hata T, Miyanishi H, Yuasa T, Setoguchi S, Takeda A, Morimoto N, Hikima JI, Sakai M, Kono T. Diel rhythm of the inflammatory cytokine il1b in the Japanese medaka (Oryzias latipes) regulated by core components of the circadian clock. FISH & SHELLFISH IMMUNOLOGY 2022; 127:238-246. [PMID: 35724845 DOI: 10.1016/j.fsi.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, studies on circadian control in immunity have been actively conducted in mammals, but little is known about circadian rhythms in the field of fish immunology. In this study, we aimed to analyse the regulation of the diel oscillation of inflammatory cytokine interleukin-1β (il1b) gene expression by core components of the circadian clock in Japanese medaka (Oryzias latipes). The expression of il1b and clock genes (bmal1 and clock1) in medaka acclimated to a 12:12 light (L): dark (D) cycle showed diel rhythm. Additionally, higher expression of il1b was detected in medaka embryo cells (OLHdrR-e3) overexpressing bmal1 and clock1. A significant decrease in il1b expression was observed in OLHdrR-e3 cells after bmal1 knockdown using morpholino oligos. These changes may be mediated by transcriptional regulation via clock proteins, which target the E-box sequence in the cis-element of il1b as identified using luciferase reporter assays. Moreover, LPS stimulation and pathogenic bacterial infection at different zeitgeber time (ZT) under LD12:12 conditions affected the degree of il1b expression, which showed high and low responsiveness to both immuno-stimulations at ZT2 and ZT14, respectively. These results suggested that fish IL-1β exhibited diel oscillation regulated by clock proteins, and its responsiveness to immune-stimulation depends on the time of day.
Collapse
Affiliation(s)
- Tomoya Takeuchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Takahiko Hata
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Takumi Yuasa
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Suzuka Setoguchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ayaka Takeda
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Natsuki Morimoto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|