1
|
Rajarajan S, Snijesh VP, Anupama CE, Nair MG, Mavatkar AD, Naidu CM, Patil S, Nimbalkar VP, Alexander A, Pillai M, Jolly MK, Sabarinathan R, Ramesh RS, Bs S, Prabhu JS. An androgen receptor regulated gene score is associated with epithelial to mesenchymal transition features in triple negative breast cancers. Transl Oncol 2023; 37:101761. [PMID: 37603927 PMCID: PMC10465938 DOI: 10.1016/j.tranon.2023.101761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Androgen receptor (AR) is considered a marker of better prognosis in hormone receptor positive breast cancers (BC), however, its role in triple negative breast cancer (TNBC) is controversial. This may be attributed to intrinsic molecular differences or scoring methods for AR positivity. We derived AR regulated gene score and examined its utility in BC subtypes. METHODS AR regulated genes were derived by applying a bioinformatic pipeline on publicly available microarray data sets of AR+ BC cell lines and gene score was calculated as average expression of six AR regulated genes. Tumors were divided into AR high and low based on gene score and associations with clinical parameters, circulating androgens, survival and epithelial to mesenchymal transition (EMT) markers were examined, further evaluated in invitro models and public datasets. RESULTS 53% (133/249) tumors were classified as AR gene score high and were associated with significantly better clinical parameters, disease-free survival (86.13 vs 72.69 months, log rank p = 0.032) when compared to AR low tumors. 36% of TNBC (N = 66) were AR gene score high with higher expression of EMT markers (p = 0.024) and had high intratumoral levels of 5α-reductase, enzyme involved in intracrine androgen metabolism. In MDA-MB-453 treated with dihydrotestosterone, SLUG expression increased, E-cadherin decreased with increase in migration and these changes were reversed with bicalutamide. Similar results were obtained in public datasets. CONCLUSION Deciphering the role of AR in BC is difficult based on AR protein levels alone. Our results support the context dependent function of AR in driving better prognosis in ER positive tumors and EMT features in TNBC tumors.
Collapse
Affiliation(s)
- Savitha Rajarajan
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India; Centre for Doctoral Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - V P Snijesh
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India; Centre for Doctoral Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - C E Anupama
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Apoorva D Mavatkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Sharada Patil
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Vidya P Nimbalkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Annie Alexander
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Maalavika Pillai
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Rakesh S Ramesh
- Department of Surgical Oncology, St. John's Medical College, Bengaluru, India
| | - Srinath Bs
- Department of Surgery, Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India.
| |
Collapse
|
2
|
Chuang KT, Chiou SS, Hsu SH. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:3338. [PMID: 37444447 DOI: 10.3390/cancers15133338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors involve many proteins in the process of transactivating or transcribing (none-) encoded DNA to initiate and regulate downstream signals, such as RNA polymerase. Their unique characteristic is that they possess specific domains that bind to specific DNA element sequences called enhancer or promoter sequences. Epithelial-mesenchymal transition (EMT) is involved in cancer progression. Many dysregulated transcription factors-such as Myc, SNAIs, Twists, and ZEBs-are key drivers of tumor metastasis through EMT regulation. This review summarizes currently available evidence related to the oncogenic role of classified transcription factors in EMT editing and epigenetic regulation, clarifying the roles of the classified conserved transcription factor family involved in the EMT and how these factors could be used as therapeutic targets in future investigations.
Collapse
Affiliation(s)
- Kai-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Alsawalha L, Ahram M, Abdullah MS, Dalmizrak O. Enzalutamide Overcomes Dihydrotestosterone Induced Chemo-Resistance In Triple-Negative Breast Cancer Cells via Apoptosis. Anticancer Agents Med Chem 2022; 22:3038-3048. [DOI: 10.2174/1871520622666220509123505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Background:
Triple-negative breast cancer is challenging to treat due to its heterogeneity and lack of therapeutic targets. Hence, systemic chemotherapy is still the mainstay in TNBC treatment. Unfortunately, patients commonly develop chemo-resistance. Androgen signalling through its receptor is an essential player in breast cancer where it has been shown to confer chemo-resistance to TNBC cells
Objective:
To elucidate the mechanistic effects of enzalutamide in the chemoresponse of TNBC cells to doxorubicin through the apoptosis pathway.
Results:
Enzalutamide decreased the viability of MDA-MB-231 and MDA-MB- 453 cells and reduced DHT-induced chemo-resistance of both cell lines. It also increased the chemo-sensitivity towards doxorubicin in MDA-MB-231 cells. Increasing DNA degradation and caspase 3/7 activity were concomitant with these outcomes. Moreover, enzalutamide downregulated the expression of the anti-apoptosis genes, mcl1 and bcl2, in MDA-MB-231 cells. Moreover, increase the pro-apoptotic gene bid. On the other hand, DHT upregulated the expression of the anti-apoptosis genes, mcl1 and bcl2, in both cell lines.
Conclusion:
DHT increases the expression of the anti-apoptosis mcl1 and bcl2 in the TNBC cells, presumably leading to cell survival via the prevention of doxorubicin-induced apoptosis. On the other hand, enzalutamide may sensitize the cells to doxorubicin through downregulation of the bid/bcl2/mcl1 axis that normally activates the executive caspases, caspase 3/7. The activities of the latter enzymes were apparent in DNA degradation at the late stages of
Collapse
Affiliation(s)
| | - Mamoun Ahram
- School of Medicine, The University of Jordan, Amman
| | | | | |
Collapse
|
4
|
Alsafadi DB, Abdullah MS, Bawadi R, Ahram M. The Association of RGS2 and Slug in the Androgen-induced Acquisition of Mesenchymal Features of Breast MDA-MB-453 Cancer Cells. Endocr Res 2022; 47:64-79. [PMID: 35168462 DOI: 10.1080/07435800.2022.2036752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of tumor cells is a prerequisite to cancer cell invasion and metastasis. This process involves a network of molecular alterations. Androgen receptor (AR) plays an important role in the biology of breast cancers, particularly those dependent on AR expression like luminal AR (LAR) breast cancer subtype. We have recently reported that the AR agonist, dihydrotestosterone (DHT), induces a mesenchymal transition of MDA-MB-453 cells, concomitant with transcriptional up-regulation of Slug and regulator of G protein signaling 2 (RGS2). OBJECTIVE The role of Slug and RGS2 in mediating the DHT-induced effects in these cells was investigated. METHODS MDA-MB-453 cells were used as a model system of LAR breast cancer. Immunofluorescence was used to examine cell morphology and protein localization. Protein expression was analyzed by immunoblotting. Protein localization was confirmed by cell fractionation followed by immunoblotting. Protein-protein interaction was confirmed by co-immunoprecipitation followed by immunoblotting. Transwell membranes were used to assess cell migration. Transfection of cells with siRNA molecules that target Slug and RGS2 mRNA was utilized to delineate the modes of action of these two molecules. RESULTS Treatment of MDA-MB-453 cells with DHT induced the expression of both proteins. In addition, AR-Slug, AR-RGS2, and Slug-RGS2 interactions were observed shortly after AR activation. Knocking down Slug abrogated the basal, but not the DHT-induced, cell migration and blocked DHT-induced mesenchymal transition. On the other hand, RGS2 knocked-down cells had an increased level of Slug protein and assumed mesenchymal cell morphology with induced migration, and the addition of DHT further elongated cell morphology and stimulated their migration. Inhibition of AR or β-catenin reverted the RGS2 knocked-down cells to the epithelial phenotype, but only inhibition of AR blocked their DHT-induced migration. CONCLUSIONS These results suggest the involvement of RGS2 and Slug in a complex molecular network regulating the DHT-induced mesenchymal features in MDA-MB-453 cells. The study may offer a better understanding of the biological role of AR in breast cancer toward devising AR-based therapeutic strategies.
Collapse
Affiliation(s)
- Dana B Alsafadi
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Mohammad S Abdullah
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Randa Bawadi
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| |
Collapse
|
5
|
Ahram M, Abdullah MS, Mustafa SA, Alsafadi DB, Battah AH. Androgen down-regulates desmocollin 2 in association with induction of mesenchymal transition of breast MDA-MB-453 cancer cells. Cytoskeleton (Hoboken) 2022; 78:391-399. [PMID: 35023302 DOI: 10.1002/cm.21691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/06/2022]
Abstract
Desmosomes are cellular structures that are critical in cell-cell adhesion and in maintaining tissue architecture. Changes in the expression of desmocollin-2 (DSC2) have been noted during tumor progression into an invasive phenotype and as cells undergo epithelial-mesenchymal transition. We have previously reported that breast MDA-MB-453 cancer cells, a luminal androgen receptor model of triple-negative breast cancer, acquire mesenchymal features when treated with the androgen receptor (AR) agonist, dihydrotestosterone (DHT). We have therefore investigated androgen regulation of the expression and cellular localization of DSC2 in MDA-MB-453 cells. Treatment of the cells with DHT resulted in a dose-dependent reduction in DSC2 protein levels and dispersion of its membrane localization concomitant with AR- and β-catenin-mediated mesenchymal transition of cells. A significant correlation was revealed between decreased expression of AR and increased expression of DSC2 in patient samples. In addition, whereas lower expression of AR was associated with a reduced overall and recurrence-free survival of breast cancer patients, higher expression of DSC2 was found in invasive breast tumors than in normal breast cells and was correlated with lower patient survival. Upon knocking down DSC2, the cells became elongated, mesenchymal-like, and slightly, but insignificantly, more migratory. The addition of DHT further stimulated cell elongation and migration. DSC2 siRNA-transfected cells reverted to a normal epithelial morphology upon inhibition of β-catenin. These results highlight the role of DSC2 in maintaining the epithelial morphology of MDA-MB-453 cells and the negative regulation of the desmosomal protein by DHT during stimulation of the androgen-induced, β-catenin-mediated mesenchymal transition of the cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohammad S Abdullah
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Shahed A Mustafa
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Dana B Alsafadi
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdelkader H Battah
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
The Other Side of the Coin: May Androgens Have a Role in Breast Cancer Risk? Int J Mol Sci 2021; 23:ijms23010424. [PMID: 35008851 PMCID: PMC8745651 DOI: 10.3390/ijms23010424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer prevention is a major challenge worldwide. During the last few years, efforts have been made to identify molecular breast tissue factors that could be linked to an increased risk of developing the disease in healthy women. In this concern, steroid hormones and their receptors are key players since they are deeply involved in the growth, development and lifetime changes of the mammary gland and play a crucial role in breast cancer development and progression. In particular, androgens, by binding their own receptor, seem to exert a dichotomous effect, as they reduce cell proliferation in estrogen receptor α positive (ERα+) breast cancers while promoting tumour growth in the ERα negative ones. Despite this intricate role in cancer, very little is known about the impact of androgen receptor (AR)-mediated signalling on normal breast tissue and its correlation to breast cancer risk factors. Through an accurate collection of experimental and epidemiological studies, this review aims to elucidate whether androgens might influence the susceptibility for breast cancer. Moreover, the possibility to exploit the AR as a useful marker to predict the disease will be also evaluated.
Collapse
|