1
|
Dinić J, Jovanović Stojanov S, Dragoj M, Grozdanić M, Podolski-Renić A, Pešić M. Cancer Patient-Derived Cell-Based Models: Applications and Challenges in Functional Precision Medicine. Life (Basel) 2024; 14:1142. [PMID: 39337925 PMCID: PMC11433531 DOI: 10.3390/life14091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The field of oncology has witnessed remarkable progress in personalized cancer therapy. Functional precision medicine has emerged as a promising avenue for achieving superior treatment outcomes by integrating omics profiling and sensitivity testing of patient-derived cancer cells. This review paper provides an in-depth analysis of the evolution of cancer-directed drugs, resistance mechanisms, and the role of functional precision medicine platforms in revolutionizing individualized treatment strategies. Using two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived xenograft (PDX) models, and advanced functional assays has significantly improved our understanding of tumor behavior and drug response. This progress will lead to identifying more effective treatments for more patients. Considering the limited eligibility of patients based on a genome-targeted approach for receiving targeted therapy, functional precision medicine provides unprecedented opportunities for customizing medical interventions according to individual patient traits and individual drug responses. This review delineates the current landscape, explores limitations, and presents future perspectives to inspire ongoing advancements in functional precision medicine for personalized cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (S.J.S.); (M.D.); (M.G.); (A.P.-R.)
| |
Collapse
|
2
|
Bittman-Soto XS, Thomas ES, Ganshert ME, Mendez-Santacruz LL, Harrell JC. The Transformative Role of 3D Culture Models in Triple-Negative Breast Cancer Research. Cancers (Basel) 2024; 16:1859. [PMID: 38791938 PMCID: PMC11119918 DOI: 10.3390/cancers16101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Advancements in cell culturing techniques have allowed the development of three-dimensional (3D) cell culture models sourced directly from patients' tissues and tumors, faithfully replicating the native tissue environment. These models provide a more clinically relevant platform for studying disease progression and treatment responses compared to traditional two-dimensional (2D) models. Patient-derived organoids (PDOs) and patient-derived xenograft organoids (PDXOs) emerge as innovative 3D cancer models capable of accurately mimicking the tumor's unique features, enhancing our understanding of tumor complexities, and predicting clinical outcomes. Triple-negative breast cancer (TNBC) poses significant clinical challenges due to its aggressive nature, propensity for early metastasis, and limited treatment options. TNBC PDOs and PDXOs have significantly contributed to the comprehension of TNBC, providing novel insights into its underlying mechanism and identifying potential therapeutic targets. This review explores the transformative role of various 3D cancer models in elucidating TNBC pathogenesis and guiding novel therapeutic strategies. It also provides an overview of diverse 3D cell culture models, derived from cell lines and tumors, highlighting their advantages and culturing challenges. Finally, it delves into live-cell imaging techniques, endpoint assays, and alternative cell culture media and methodologies, such as scaffold-free and scaffold-based systems, essential for advancing 3D cancer model research and development.
Collapse
Affiliation(s)
- Xavier S. Bittman-Soto
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA; (E.S.T.)
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00921, USA
| | - Evelyn S. Thomas
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA; (E.S.T.)
| | | | | | - J. Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA; (E.S.T.)
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
3
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
4
|
Derouane F, Desgres M, Moroni C, Ambroise J, Berlière M, Van Bockstal MR, Galant C, van Marcke C, Vara-Messler M, Hutten SJ, Jonkers J, Mourao L, Scheele CLGJ, Duhoux FP, Corbet C. Metabolic adaptation towards glycolysis supports resistance to neoadjuvant chemotherapy in early triple negative breast cancers. Breast Cancer Res 2024; 26:29. [PMID: 38374113 PMCID: PMC10875828 DOI: 10.1186/s13058-024-01788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) is the standard of care for patients with early-stage triple negative breast cancers (TNBC). However, more than half of TNBC patients do not achieve a pathological complete response (pCR) after NAC, and residual cancer burden (RCB) is associated with dismal long-term prognosis. Understanding the mechanisms underlying differential treatment outcomes is therefore critical to limit RCB and improve NAC efficiency. METHODS Human TNBC cell lines and patient-derived organoids were used in combination with real-time metabolic assays to evaluate the effect of NAC (paclitaxel and epirubicin) on tumor cell metabolism, in particular glycolysis. Diagnostic biopsies (pre-NAC) from patients with early TNBC were analyzed by bulk RNA-sequencing to evaluate the predictive value of a glycolysis-related gene signature. RESULTS Paclitaxel induced a consistent metabolic switch to glycolysis, correlated with a reduced mitochondrial oxidative metabolism, in TNBC cells. In pre-NAC diagnostic biopsies from TNBC patients, glycolysis was found to be upregulated in non-responders. Furthermore, glycolysis inhibition greatly improved response to NAC in TNBC organoid models. CONCLUSIONS Our study pinpoints a metabolic adaptation to glycolysis as a mechanism driving resistance to NAC in TNBC. Our data pave the way for the use of glycolysis-related genes as predictive biomarkers for NAC response, as well as the development of inhibitors to overcome this glycolysis-driven resistance to NAC in human TNBC patients.
Collapse
Affiliation(s)
- Françoise Derouane
- Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Manon Desgres
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium
| | - Camilla Moroni
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium
| | - Jérôme Ambroise
- Centre des Technologies Moléculaires Appliquées (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 54, 1200, Brussels, Belgium
| | - Martine Berlière
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Pole of Gynecology (GYNE), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 52, 1200, Brussels, Belgium
| | - Mieke R Van Bockstal
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Christine Galant
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Pole of Morphology (MORF), Institut de Recherche Expérimentale Et Clinique (IREC), UCLouvain, Avenue Mounier 52, 1200, Brussels, Belgium
| | - Cédric van Marcke
- Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Marianela Vara-Messler
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium
- Sanofi Belgium, 9052, Zwijnaarde, Belgium
| | - Stefan J Hutten
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Larissa Mourao
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000, Louvain, Belgium
| | - Colinda L G J Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000, Leuven, Belgium
- Department of Oncology, KU Leuven, 3000, Louvain, Belgium
| | - Francois P Duhoux
- Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, 1200, Brussels, Belgium.
| |
Collapse
|
5
|
Thorel L, Morice PM, Paysant H, Florent R, Babin G, Thomine C, Perréard M, Abeilard E, Giffard F, Brotin E, Denoyelle C, Villenet C, Sebda S, Briand M, Joly F, Dolivet E, Goux D, Blanc-Fournier C, Jeanne C, Villedieu M, Meryet-Figuiere M, Figeac M, Poulain L, Weiswald LB. Comparative analysis of response to treatments and molecular features of tumor-derived organoids versus cell lines and PDX derived from the same ovarian clear cell carcinoma. J Exp Clin Cancer Res 2023; 42:260. [PMID: 37803448 PMCID: PMC10559504 DOI: 10.1186/s13046-023-02809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND In the era of personalized medicine, the establishment of preclinical models of cancer that faithfully recapitulate original tumors is essential to potentially guide clinical decisions. METHODS We established 7 models [4 cell lines, 2 Patient-Derived Tumor Organoids (PDTO) and 1 Patient-Derived Xenograft (PDX)], all derived from the same Ovarian Clear Cell Carcinoma (OCCC). To determine the relevance of each of these models, comprehensive characterization was performed based on morphological, histological, and transcriptomic analyses as well as on the evaluation of their response to the treatments received by the patient. These results were compared to the clinical data. RESULTS Only the PDX and PDTO models derived from the patient tumor were able to recapitulate the patient tumor heterogeneity. The patient was refractory to carboplatin, doxorubicin and gemcitabine, while tumor cell lines were sensitive to these treatments. In contrast, PDX and PDTO models displayed resistance to the 3 drugs. The transcriptomic analysis was consistent with these results since the models recapitulating faithfully the clinical response grouped together away from the other classical 2D cell culture models. We next investigated the potential of drugs that have not been used in the patient clinical management and we identified the HDAC inhibitor belinostat as a potential effective treatment based on PDTO response. CONCLUSIONS PDX and PDTO appear to be the most relevant models, but only PDTO seem to present all the necessary prerequisites for predictive purposes and could constitute relevant tools for therapeutic decision support in the context of these particularly aggressive cancers refractory to conventional treatments.
Collapse
Affiliation(s)
- Lucie Thorel
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Pierre-Marie Morice
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Hippolyte Paysant
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Romane Florent
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- Université de Caen Normandie, Services Unit PLATON, ORGAPRED Core Facility, Caen, France
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France
| | - Guillaume Babin
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Department of Surgery, Caen, France
| | - Cécilia Thomine
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Marion Perréard
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Edwige Abeilard
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France
| | - Florence Giffard
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France
| | - Emilie Brotin
- Université de Caen Normandie, Services Unit PLATON, ImpedanCell Core Facility, Caen, France
| | - Christophe Denoyelle
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France
- Université de Caen Normandie, Services Unit PLATON, ImpedanCell Core Facility, Caen, France
| | - Céline Villenet
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Shéhérazade Sebda
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Mélanie Briand
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Biological Resources Center 'OvaRessources', Caen, France
| | - Florence Joly
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Clinical Research Department, Caen, France
| | - Enora Dolivet
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Department of Surgery, Caen, France
| | - Didier Goux
- Université de Caen Normandie, Services Unit EMERODE, « Centre de Microscopie Appliquée À La Biologie » CMAbio3, Caen, France
| | - Cécile Blanc-Fournier
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Biological Resources Center 'OvaRessources', Caen, France
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Department of Biopathology, Caen, France
| | - Corinne Jeanne
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Department of Biopathology, Caen, France
| | - Marie Villedieu
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Matthieu Meryet-Figuiere
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France
| | - Martin Figeac
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Laurent Poulain
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France.
- Université de Caen Normandie, Services Unit PLATON, ORGAPRED Core Facility, Caen, France.
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Biological Resources Center 'OvaRessources', Caen, France.
| | - Louis-Bastien Weiswald
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France.
- Université de Caen Normandie, Services Unit PLATON, ORGAPRED Core Facility, Caen, France.
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France.
| |
Collapse
|
6
|
El Harane S, Zidi B, El Harane N, Krause KH, Matthes T, Preynat-Seauve O. Cancer Spheroids and Organoids as Novel Tools for Research and Therapy: State of the Art and Challenges to Guide Precision Medicine. Cells 2023; 12:cells12071001. [PMID: 37048073 PMCID: PMC10093533 DOI: 10.3390/cells12071001] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Spheroids and organoids are important novel players in medical and life science research. They are gradually replacing two-dimensional (2D) cell cultures. Indeed, three-dimensional (3D) cultures are closer to the in vivo reality and open promising perspectives for academic research, drug screening, and personalized medicine. A large variety of cells and tissues, including tumor cells, can be the starting material for the generation of 3D cultures, including primary tissues, stem cells, or cell lines. A panoply of methods has been developed to generate 3D structures, including spontaneous or forced cell aggregation, air-liquid interface conditions, low cell attachment supports, magnetic levitation, and scaffold-based technologies. The choice of the most appropriate method depends on (i) the origin of the tissue, (ii) the presence or absence of a disease, and (iii) the intended application. This review summarizes methods and approaches for the generation of cancer spheroids and organoids, including their advantages and limitations. We also highlight some of the challenges and unresolved issues in the field of cancer spheroids and organoids, and discuss possible therapeutic applications.
Collapse
Affiliation(s)
- Sanae El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Bochra Zidi
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Nadia El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Thomas Matthes
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Laboratory of Experimental Cell Therapy, Department of Diagnostics, Geneva University Hospitals, 1206 Geneva, Switzerland
| |
Collapse
|
7
|
The Role of Patient-Derived Organoids in Triple-Negative Breast Cancer Drug Screening. Biomedicines 2023; 11:biomedicines11030773. [PMID: 36979752 PMCID: PMC10045189 DOI: 10.3390/biomedicines11030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer subtypes, with a grave prognosis and few effective treatment options. Organoids represent revolutionary three-dimensional cell culture models, derived from stem or differentiated cells and preserving the capacity to differentiate into the cell types of their tissue of origin. The current review aims at studying the potential of patient-derived TNBC organoids for drug sensitivity testing as well as highlighting the advantages of the organoid technology in terms of drug screening. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms “organoid” and “triple-negative breast cancer” were employed, and we were able to identify 25 studies published between 2018 and 2022. The current manuscript represents the first comprehensive review of the literature focusing on the use of patient-derived organoids for drug sensitivity testing in TNBC. Patient-derived organoids are excellent in vitro study models capable of promoting personalized TNBC therapy by reflecting the treatment responses of the corresponding patients and exhibiting high predictive value in the context of patient survival evaluation.
Collapse
|
8
|
Abstract
Organoids are a new type of 3D model for tumor research, which makes up for the shortcomings of cell lines and xenograft models, and promotes the development of personalized precision medicine. Long-term culture, expansion and storage of organoids provide the necessary conditions for the establishment of biobanks. Biobanks standardize the collection and preservation of normal or pathological specimens, as well as related clinical information. The tumor organoid biobank has a good quality control system, which is conducive to the clinical transformation and large-scale application of tumor organoids, such as disease modeling, new drug development and high-throughput drug screening. This article summarized the common tumor types of patient-derived organoid (PDO) biobanks and the necessary information for biobank construction, such as the number of organoids, morphology, success rate of culture and resuscitation, pathological types. In our results, we found that patient-derived tumor organoid (PDTO) biobanks were being established more and more, with the Netherlands, the United States, and China establishing the most. Biobanks of colorectal, pancreas, breast, glioma, and bladder cancers were established more, which reflected the relative maturity of culture techniques for these tumors. In addition, we provided insights on the precautions and future development direction of PDTO biobank building.
Collapse
|