1
|
Chen H, Zhu R. Alternaria Allergy and Immunotherapy. Int Arch Allergy Immunol 2024; 185:964-974. [PMID: 38865977 DOI: 10.1159/000539237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Allergen immunotherapy (AIT) is the only known causative treatment for Alternaria allergy, but the difficulty in standardizing Alternaria extracts hampers its effectiveness and safety. SUMMARY Alternaria, a potent airborne allergen, has a high sensitization rate and is known to trigger the onset and exacerbation of respiratory allergies, even inducing fungal food allergy syndrome in some cases. It can trigger a type 2 inflammatory response, leading to an increase in the secretion of type 2 inflammatory cytokines and eosinophils, which are the culprits behind allergic symptoms. Diagnosing Alternaria allergy is a multistep process, involving a careful examination of clinical symptoms, medical history, skin prick tests, serum-specific IgE detection, or provocation tests. Alt a1, the major component of Alternaria, is a vital player in diagnosing Alternaria allergy through component-resolved diagnosis. Interestingly, Alternaria can reduce the protein activity of other allergens like pollen and cat dander when mixed with them. In order to solve the problems of standardization, efficacy and safety of traditional Alternaria AIT, novel AIT methods targeting Alt a1 and innovative vaccines such as epitope, DNA, and mRNA vaccines seem promising in bypassing the standardization issue of Alternaria extracts. But these studies are in early stages, and most researches are still focused on animal models, calling for more evidence to validate their use in humans. KEY MESSAGES This review delves into the various aspects of Alternaria allergy, including characteristics, epidemiology, immune mechanisms, diagnosis, clinical manifestations, and the application and limitations of Alternaria AIT, aiming to provide a foundation for the management of patients with Alternaria allergy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Abel-Fernández E, Fernández-Caldas E. Allergy to fungi: Advances in the understanding of fungal allergens. Mol Immunol 2023; 163:216-223. [PMID: 37864931 DOI: 10.1016/j.molimm.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Allergic diseases are a major health problem due to their increasing incidence and high prevalence worldwide. Asthma has several aetiologies, and allergy plays an important role in its development in approximately 60% of adults and 80% of children and adolescents. Although the link between aeroallergen sensitization and asthma exacerbations has been long recognized, the investigations of the triggering allergens may be superficial in many asthma cases. The main allergenic sources related to asthma, and other allergic diseases, are pollens, mites, fungi, and animal epithelia. Fungi are considered the third most frequent cause of respiratory pathologies. Asthma caused by several fungi species may have a bad prognosis in some cases due to its severity and difficulty in avoidance methods. Despite the recognised relevance of fungi in respiratory allergies, the knowledge about fungal allergens seems to be scarce, with few descriptions of new allergens, compared to other allergenic sources. The study of major, minor, and cross-reactive fungal allergens, and their relevance in the allergic disease, might be crucial, not only to accurately diagnose these allergies, but also to predict exacerbations and responses to therapies, as well as for the development of personalized treatment plans in a fast-changing climate scenario.
Collapse
|
3
|
Abel-Fernández E, Martínez MJ, Galán T, Pineda F. Going over Fungal Allergy: Alternaria alternata and Its Allergens. J Fungi (Basel) 2023; 9:jof9050582. [PMID: 37233293 DOI: 10.3390/jof9050582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Fungal allergy is the third most frequent cause of respiratory pathologies and the most related to a poor prognosis of asthma. The genera Alternaria and Cladosporium are the most frequently associated with allergic respiratory diseases, with Alternaria being the one with the highest prevalence of sensitization. Alternaria alternata is an outdoor fungus whose spores disseminate in warm and dry air, reaching peak levels in temperate summers. Alternaria can also be found in damp and insufficiently ventilated houses, causing what is known as sick building syndrome. Thus, exposure to fungal allergens can occur outdoors and indoors. However, not only spores but also fungal fragments contain detectable amounts of allergens and may function as aeroallergenic sources. Allergenic extracts of Alternaria hyphae and spores are still in use for the diagnosis and treatment of allergic diseases but are variable and insufficiently standardised, as they are often a random mixture of allergenic ingredients and casual impurities. Thus, diagnosis of fungal allergy has been difficult, and knowledge about new fungal allergens is stuck. The number of allergens described in Fungi remains almost constant while new allergens are being found in the Plantae and Animalia kingdoms. Given Alt a 1 is not the unique Alternaria allergen eliciting allergy symptoms, component-resolved diagnosis strategies should be applied to diagnose fungal allergy. To date, twelve A. alternata allergens are accepted in the WHO/IUIS Allergen Nomenclature Subcommittee, many of them are enzymes: Alt a 4 (disulfide isomerase), Alt a 6 (enolase), Alt a 8 (mannitol de-hydrogenase), Alt a 10 (aldehyde dehydrogenase), Alt a 13 (glutathione-S-transferase) and Alt a MnSOD (Mn superoxide dismutase), and others have structural and regulatory functions such as Alt a 5 and Alt a 12, Alt a 3, Alt a 7. The function of Alt a 1 and Alt a 9 remains unknown. Other four allergens are included in other medical databases (e.g., Allergome): Alt a NTF2, Alt a TCTP, and Alt a 70 kDa. Despite Alt a 1 being the A. alternata major allergen, other allergens, such as enolase, Alt a 6 or MnSOD, Alt a 14 have been suggested to be included in the diagnosis panel of fungal allergy.
Collapse
Affiliation(s)
- Eva Abel-Fernández
- Applied Science, Inmunotek S.L., Parque Científico Tecnológico Alcalá de Henares, 28805 Madrid, Spain
| | - María José Martínez
- Applied Science, Inmunotek S.L., Parque Científico Tecnológico Alcalá de Henares, 28805 Madrid, Spain
| | - Tania Galán
- Applied Science, Inmunotek S.L., Parque Científico Tecnológico Alcalá de Henares, 28805 Madrid, Spain
| | - Fernando Pineda
- Applied Science, Inmunotek S.L., Parque Científico Tecnológico Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
4
|
Recent Advances in the Allergic Cross-Reactivity between Fungi and Foods. J Immunol Res 2022; 2022:7583400. [PMID: 36249419 PMCID: PMC9568318 DOI: 10.1155/2022/7583400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Airborne fungi are one of the most ubiquitous kinds of inhalant allergens which can result in allergic diseases. Fungi tend to grow in warm and humid environments with regional and seasonal variations. Their nomenclature and taxonomy are related to the sensitization of immunoglobulin E (IgE). Allergic cross-reactivity among different fungal species appears to be widely existing. Fungus-related foods, such as edible mushrooms, mycoprotein, and fermented foods by fungi, can often induce to fungus food allergy syndrome (FFAS) by allergic cross-reactivity with airborne fungi. FFAS may involve one or more target organs, including the oral mucosa, the skin, the gastrointestinal and respiratory tracts, and the cardiovascular system, with various allergic symptoms ranging from oral allergy syndrome (OAS) to severe anaphylaxis. This article reviews the current knowledge on the field of allergic cross-reactivity between fungal allergens and related foods, as well as the diagnosis and treatment on FFAS.
Collapse
|
5
|
Čelakovská J, Bukač J, Vaňková R, Krejsek J, Andrýs C. The relation between the sensitization to molecular components of inhalant allergens and food reactions in patients suffering from atopic dermatitis. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2020.1865281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- J. Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital, Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J. Bukač
- Department of Medical Biophysic, Medical Faculty of Charles University, Hradec Králové, Czech republic
| | - R. Vaňková
- Department of Clinical Immunology and Allergy, Faculty Hospital, Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J. Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital, Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - C. Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital, Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Faber MA, Van Gasse AL, Decuyper II, Sabato V, Hagendorens MM, Mertens C, Bridts CH, De Clerck LS, Ebo DG. Cross-Reactive Aeroallergens: Which Need to Cross Our Mind in Food Allergy Diagnosis? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2018; 6:1813-1823. [PMID: 30172018 DOI: 10.1016/j.jaip.2018.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
Secondary food allergies due to cross-reactivity between inhalant and food allergens are a significant and increasing global health issue. Cross-reactive food allergies predominantly involve plant-derived foods resulting from a prior sensitization to cross-reactive components present in pollen (grass, tree, weeds) and natural rubber latex. Also, primary sensitization to allergens present in fungi, insects, and both nonmammalian and mammalian meat might induce cross-reactive food allergic syndromes. Correct diagnosis of these associated food allergies is not always straightforward and can pose a difficult challenge. As a matter of fact, cross-reactive allergens might hamper food allergy diagnosis, as they can cause clinically irrelevant positive tests to cross-reacting foods that are safely consumed. This review summarizes the most relevant cross-reactivity syndromes between inhalant and food allergens. Particular focus is paid to the potential and limitations of confirmatory testing such as skin testing, specific IgE assays, molecular diagnosis, and basophil activation test.
Collapse
Affiliation(s)
- Margaretha A Faber
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Athina L Van Gasse
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Faculty of Medicine and Health Science, Department of Pediatrics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Ine I Decuyper
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Faculty of Medicine and Health Science, Department of Pediatrics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Vito Sabato
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Margo M Hagendorens
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Faculty of Medicine and Health Science, Department of Pediatrics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Christel Mertens
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Chris H Bridts
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Luc S De Clerck
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Didier G Ebo
- Faculty of Medicine and Health Science, Department of Immunology, Allergology, Rheumatology, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
7
|
|
8
|
|
9
|
Gabriel MF, Postigo I, Tomaz CT, Martínez J. Alternaria alternata allergens: Markers of exposure, phylogeny and risk of fungi-induced respiratory allergy. ENVIRONMENT INTERNATIONAL 2016; 89-90:71-80. [PMID: 26826364 DOI: 10.1016/j.envint.2016.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 05/25/2023]
Abstract
Alternaria alternata spores are considered a well-known biological contaminant and a very common potent aeroallergen source that is found in environmental samples. The most intense exposure to A. alternata allergens is likely to occur outdoors; however, Alternaria and other allergenic fungi can colonize in indoor environments and thereby increase the fungal aeroallergen exposure levels. A consequence of human exposure to fungal aeroallergens, sensitization to A. alternata, has been unequivocally associated with increased asthma severity. Among allergenic proteins described in this fungal specie, the major allergen, Alt a 1, has been reported as the main elicitor of airborne allergies in patients affected by a mold allergy and considered a marker of primary sensitization to A. alternata. Moreover, A. alternata sensitization seems to be a triggering factor in the development of poly-sensitization, most likely because of the capability of A. alternata to produce, in addition to Alt a 1, a broad and complex array of cross-reactive allergens that present homologs in several other allergenic sources. The study and understanding of A. alternata allergen information may be the key to explaining why sensitization to A. alternata is a risk factor for asthma and also why the severity of asthma is associated to this mold. Compared to other common environmental allergenic sources, such as pollens and dust mites, fungi are reported to be neglected and underestimated. The rise of the A. alternata allergy has enabled more research into the role of this fungal specie and its allergenic components in the induction of IgE-mediated respiratory diseases. Indeed, recent research on the identification and characterization of A. alternata allergens has allowed for the consideration of new perspectives in the categorization of allergenic molds, assessment of exposure and diagnosis of fungi-induced allergies.
Collapse
Affiliation(s)
- Marta F Gabriel
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain; Department of Chemistry and CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Idoia Postigo
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain
| | - Cândida T Tomaz
- Department of Chemistry and CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Jorge Martínez
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy and Laboratory of Parasitology and Allergy, Lascaray Research Centre, University of the Basque Country, Vitoria, Spain.
| |
Collapse
|
10
|
Twaroch TE, Curin M, Valenta R, Swoboda I. Mold allergens in respiratory allergy: from structure to therapy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:205-20. [PMID: 25840710 PMCID: PMC4397360 DOI: 10.4168/aair.2015.7.3.205] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022]
Abstract
Allergic reactions to fungi were described 300 years ago, but the importance of allergy to fungi has been underestimated for a long time. Allergens from fungi mainly cause respiratory and skin symptoms in sensitized patients. In this review, we will focus on fungi and fungal allergens involved in respiratory forms of allergy, such as allergic rhinitis and asthma. Fungi can act as indoor and outdoor respiratory allergen sources, and depending on climate conditions, the rates of sensitization in individuals attending allergy clinics range from 5% to 20%. Due to the poor quality of natural fungal allergen extracts, diagnosis of fungal allergy is hampered, and allergen-specific immunotherapy is rarely given. Several factors are responsible for the poor quality of natural fungal extracts, among which the influence of culture conditions on allergen contents. However, molecular cloning techniques have allowed us to isolate DNAs coding for fungal allergens and to produce a continuously growing panel of recombinant allergens for the diagnosis of fungal allergy. Moreover, technologies are now available for the preparation of recombinant and synthetic fungal allergen derivatives which can be used to develop safe vaccines for the treatment of fungal allergy.
Collapse
Affiliation(s)
- Teresa E Twaroch
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ines Swoboda
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.; The Molecular Biotechnology Section, University of Applied Sciences, Campus Vienna Biocenter, Vienna, Austria
| |
Collapse
|
11
|
Gabriel MF, González-Delgado P, Postigo I, Fernández J, Soriano V, Cueva B, Martínez J. From respiratory sensitization to food allergy: Anaphylactic reaction after ingestion of mushrooms (Agaricus bisporus). Med Mycol Case Rep 2015; 8:14-6. [PMID: 25750856 PMCID: PMC4348448 DOI: 10.1016/j.mmcr.2015.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 11/17/2022] Open
Abstract
We report a case of a 38-year-old mold-allergic patient who developed episodes of generalized urticaria and systemic anaphylactic shock immediately after ingesting button mushrooms. A manganese-dependent superoxide dismutase (MnSOD) and a NADP-dependent mannitol dehydrogenase (MtDH) from Agaricus bisporus mushroom were identified as patient-specific IgE-binding proteins. Cross-reactivity between A. bisporus MnSOD and mold aeroallergens was confirmed. We conclude that prior sensitization to mold aeroallergens might explain severe food reactions to cross-reacting homologs mushroom proteins.
Collapse
Affiliation(s)
- Marta F. Gabriel
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, Laboratory of Parasitology and Immunoallergy, Center for Research Laskaray, University of the Basque Country, Paseo Universidad, 6, 01006 Vitoria, Álava, Spain
| | | | - Idoia Postigo
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, Laboratory of Parasitology and Immunoallergy, Center for Research Laskaray, University of the Basque Country, Paseo Universidad, 6, 01006 Vitoria, Álava, Spain
| | - Javier Fernández
- Allergy Section, University General Hospital of Alicante, Calle Pintor Baeza s/n, 03010 Alicante, Spain
- Department of Medicine, Faculty of Medicine, University Miguel Hernández, Alicante-Valencia Road, 03550 San Joan, Alicante, Spain
| | - Victor Soriano
- Allergy Section, University General Hospital of Alicante, Calle Pintor Baeza s/n, 03010 Alicante, Spain
| | - Begoña Cueva
- Allergy Section, University General Hospital of Alicante, Calle Pintor Baeza s/n, 03010 Alicante, Spain
| | - Jorge Martínez
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, Laboratory of Parasitology and Immunoallergy, Center for Research Laskaray, University of the Basque Country, Paseo Universidad, 6, 01006 Vitoria, Álava, Spain
- Corresponding author.
| |
Collapse
|
12
|
Ferrer M, Redón B, Bartolomé B, Michavila A. Food allergy to spinach in an infant. Allergol Immunopathol (Madr) 2011; 39:378-9. [PMID: 21269751 DOI: 10.1016/j.aller.2010.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/04/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
13
|
Phase I Clinical Study of the Dietary Supplement, Agaricus blazei Murill, in Cancer Patients in Remission. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:192381. [PMID: 21584278 PMCID: PMC3092499 DOI: 10.1155/2011/192381] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 09/27/2010] [Accepted: 02/17/2011] [Indexed: 11/29/2022]
Abstract
Although many cancer patients use complementary and alternative medicine, including Agaricus blazei Murill (ABM), safety is not yet well understood. Cancer survivors took 1.8, 3.6, or 5.4 g ABM granulated powder (Kyowa Wellness Co., Ltd., Tokyo, Japan) per day orally for 6 months. Adverse events were defined by subjective/objective symptoms and laboratory data according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0 (NCI-CTCAE v3.0). Seventy-eight patients were assessed for safety of ABM (30/24/24 subjects at 1/2/3 packs per day, resp.). Adverse events were observed in 9 patients (12%). Most were digestive in nature such as nausea and diarrhea, and one patient developed a liver dysfunction-related food allergy, drug lymphocyte product. However, none of these adverse events occurred in a dose-dependent manner. This study shows that ABM does not cause problems in most patients within laboratory parameters at the dosages tested over 6 months. This trial supports previous evidence that the ABM product is generally safe, excluding possible allergic reaction.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Immunologic cross-reactivity, which is important in many aspects of host defense and immune-mediated diseases, is a prominent feature of allergic disorders. The goal of this article is to define allergenic cross-reactivity and its role in food allergy, review current understanding of mechanisms of cross-reactivity, and consider how advances in our ability to predict cross-reactivity can impact diagnosis and treatment of food allergy. RECENT FINDINGS Recent evidence suggests that specific T cells, in addition to IgE, developed in response to inhaled allergens can cross-react with related food allergens, leading to distinct clinical reactions. Several new cross-reactivities have been identified, including food-food, pollen-food, and latex-venom associations. Debate continues regarding prediction of allergenicity based on protein structure, and clinical relevance of in-vitro testing. Cross-reactivity is also being used to develop specific immunotherapy for treatment of food allergy. SUMMARY A thorough understanding of immunologic cross-reactivity is essential to advancing our knowledge about food allergy. This knowledge will help elucidate the pathogenesis of the disorder and prevent exposures to allergenic, genetically engineered foods. New insight will allow for better utilization of current diagnostic tools and the development of more accurate tests and therapies for food allergy.
Collapse
|