1
|
Jiao J, Qian Y, Lv Y, Wei W, Long Y, Guo X, Buerliesi A, Ye J, Han H, Li J, Zhu Y, Zhang W. Overcoming limitations and advancing the therapeutic potential of antibody-oligonucleotide conjugates (AOCs): Current status and future perspectives. Pharmacol Res 2024; 209:107469. [PMID: 39433169 DOI: 10.1016/j.phrs.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As cancer incidence rises due to an aging population, the importance of precision medicine continues to grow. Antibody-drug conjugates (ADCs) exemplify targeted therapies by delivering cytotoxic agents to specific antigens. Building on this concept, researchers have developed antibody-oligonucleotide conjugates (AOCs), which combine antibodies with oligonucleotides to regulate gene expression. This review highlights the mechanism of AOCs, emphasizing their unique ability to selectively target and modulate disease-causing proteins. It also explores the components of AOCs and their application in tumor therapy while addressing key challenges such as manufacturing complexities, endosomal escape, and immune response. The article underscores the significance of AOCs in precision oncology and discusses future directions, highlighting their potential in treating cancers driven by genetic mutations and abnormal protein expression.
Collapse
Affiliation(s)
- Jinlan Jiao
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Qian
- Dermatologic Surgery Department, Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing 210042, China
| | - Yinhua Lv
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Wenqian Wei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yongxuan Long
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaoling Guo
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Anya Buerliesi
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Hao Han
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Sakata J, Tatsumi T, Sugiyama A, Shimizu A, Inagaki Y, Katoh H, Yamashita T, Takahashi K, Aki S, Kaneko Y, Kawamura T, Miura M, Ishii M, Osawa T, Tanaka T, Ishikawa S, Tsukagoshi M, Chansler M, Kodama T, Kanai M, Tokuyama H, Yamatsugu K. Antibody-mimetic drug conjugate with efficient internalization activity using anti-HER2 VHH and duocarmycin. Protein Expr Purif 2024; 214:106375. [PMID: 37797818 DOI: 10.1016/j.pep.2023.106375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Antibody-mimetic drug conjugate (AMDC) is a cancer cell-targeted drug delivery system based on the non-covalent binding of mutated streptavidin and modified biotin, namely Cupid and Psyche. However, the development of AMDCs is hampered by difficulties in post-translational modification or poor internalization activity. Here, we report an expression, refolding, and purification method for AMDC using a variable heavy chain of heavy chain-only antibodies (VHHs). Monomeric anti-HER2 VHH fused to Cupid was expressed in Escherichia coli inclusion bodies. Solubilization and refolding at optimized reducing conditions and pH levels were selected to form a functional, tetrameric protein (anti-HER2 VHH-Cupid) that can be easily purified based on molecular weight. Anti-HER2 VHH-Cupid non-covalently creates a tight complex with Psyche linked to a potent DNA-alkylating agent, duocarmycin. This complex can be absorbed by the HER2-expressing human breast cancer cell line, KPL-4, and kills KPL-4 cells in vitro and in vivo. The production of a targeting protein with internalizing activity, combined with the non-covalent conjugation of a highly potent payload, renders AMDC a promising platform for developing cancer-targeted therapy.
Collapse
Affiliation(s)
- Juri Sakata
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshifumi Tatsumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Sugiyama
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunyo-ku, Tokyo, 113-0032, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| | - Akihiro Shimizu
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yuya Inagaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takefumi Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan; Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kazuki Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sho Aki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yudai Kaneko
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan; Medical & Biological Laboratories Co., Ltd, 2-11-8 Shibadaimon, Minato-ku, Tokyo, 105-0012, Japan
| | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunyo-ku, Tokyo, 113-0032, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Mai Miura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Masazumi Ishii
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Tsuyoshi Osawa
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Toshiya Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | - Michael Chansler
- Savid Therapeutics Inc., Eifuku 3-9-10, Suginami-ku, Tokyo, 168-0064, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan.
| |
Collapse
|
3
|
Lee JW, Choi J, Choi Y, Kim K, Yang Y, Kim SH, Yoon HY, Kwon IC. Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy. J Control Release 2022; 351:713-726. [DOI: 10.1016/j.jconrel.2022.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
|
4
|
Cao W, Li R, Pei X, Chai M, Sun L, Huang Y, Wang J, Barth S, Yu F, He H. Antibody-siRNA conjugates (ARC): Emerging siRNA drug formulation. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Chabrol E, Fagnen C, Landron S, Marcheteau E, Stojko J, Guenin SP, Antoine M, Fould B, Ferry G, Boutin JA, Vénien-Bryan C. Biochemistry, structure, and cellular internalization of a four nanobody-bearing Fc dimer. Protein Sci 2021; 30:1946-1957. [PMID: 34117809 DOI: 10.1002/pro.4147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
VHH stands for the variable regions of heavy chain only of camelid IgGs. The VHH family forms a set of interesting proteins derived from antibodies that maintain their capacity to recognize the antigen, despite their relatively small molecular weight (in the 12,000 Da range). Continuing our exploration of the possibilities of those molecules, we chose to design alternative molecules with maintained antigen recognition, but enhanced capacity, by fusing four VHH with one Fc, the fragment crystallizable region of antibodies. In doing so, we aimed at having a molecule with superior quantitative antigen recognition (×4) while maintaining its size below the 110 kDa. In the present paper, we described the building of those molecules that we coined VHH2 -Fc-VHH2 . The structure of VHH2 -Fc-VHH2 in complex with HER2 antigen was determined using electronic microscopy and modeling. The molecule is shown to bind four HER2 proteins at the end of its flexible arms. VHH2 -Fc-VHH2 also shows an internalization capacity via HER2 receptor superior to the reference anti-HER2 monoclonal antibody, Herceptin®, and to a simple fusion of two VHH with one Fc (VHH2 -Fc). This new type of molecules, VHH2 -Fc-VHH2 , could be an interesting addition to the therapeutic arsenal with multiple applications, from diagnostic to therapy.
Collapse
Affiliation(s)
- Eric Chabrol
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.,Lumedix, Palaiseau, France
| | - Charline Fagnen
- Sorbonne Université, UMR 7590, CNRS, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France.,Université de Caen, Caen, France
| | - Sophie Landron
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Estelle Marcheteau
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Johann Stojko
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Sophie-Pénélope Guenin
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Mathias Antoine
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.,Roche Pharma SA, Basel, Switzerland
| | - Benjamin Fould
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Gilles Ferry
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales Servier, Suresnes Cedex, France.,PHARMADEV (Pharmacochimie et biologie pour le développement), Université Toulouse 3 Paul Sabatier, Faculté de Pharmacie, Toulouse Cedex 9, France
| | - Catherine Vénien-Bryan
- Sorbonne Université, UMR 7590, CNRS, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
6
|
Gordon RE, Nemeth JF, Singh S, Lingham RB, Grewal IS. Harnessing SLE Autoantibodies for Intracellular Delivery of Biologic Therapeutics. Trends Biotechnol 2020; 39:298-310. [PMID: 32807530 DOI: 10.1016/j.tibtech.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Intracellular delivery of therapeutic antibodies is highly desirable but remains a challenge for biomedical research and the pharmaceutical industry. Approximately two-thirds of disease-associated targets are found inside the cell. Difficulty blocking these targets with available drugs creates a need for technology to deliver highly specific therapeutic antibodies intracellularly. Historically, antibodies have not been believed to traverse the cell membrane and neutralize intracellular targets. Emerging evidence has revealed that anti-DNA autoantibodies found in systemic lupus erythematosus (SLE) patients can penetrate inside the cell. Harnessing this technology has the potential to accelerate the development of drugs against intracellular targets. Here, we dissect the mechanisms of the intracellular localization of SLE antibodies and discuss how to apply these insights to engineer successful cell-penetrating antibody drugs.
Collapse
Affiliation(s)
- Renata E Gordon
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Jennifer F Nemeth
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Sanjaya Singh
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Russell B Lingham
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA.
| |
Collapse
|
7
|
Pravinsagar P, Im SW, Jang YJ. Pathogenic effect of a cell-penetrating anti-dsDNA autoantibody through p38 signaling pathway and pro-inflammatory cytokine stimulation in mesangial cells. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1401557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Pavithra Pravinsagar
- Department of Biomedical Sciences, Graduate School of Medicine and Department of Microbiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Sun-Woo Im
- Department of Biomedical Sciences, Graduate School of Medicine and Department of Microbiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Young-Ju Jang
- Department of Biomedical Sciences, Graduate School of Medicine and Department of Microbiology, School of Medicine, Ajou University, Suwon, Republic of Korea
| |
Collapse
|