1
|
Naully PG, Tan MI, Nugrahapraja H, Artarini AA, Aditama R, Giri-Rachman EA. Design of multi-epitope-based therapeutic vaccine candidates from HBc and HBx proteins of hepatitis B virus using reverse vaccinology and immunoinformatics approaches. PLoS One 2024; 19:e0313269. [PMID: 39642099 PMCID: PMC11623480 DOI: 10.1371/journal.pone.0313269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 12/08/2024] Open
Abstract
The major problem in cases of chronic hepatitis B (CHB) is the failure of the patient's immune response to eliminate the covalently closed circular DNA (cccDNA) minichromosome of hepatitis B virus (HBV). Epigenetic regulation involving the HBV core protein (HBc) and HBV X protein (HBx) influences the transcription and stability of the cccDNA minichromosome. The HBc and/or HBx-based therapeutic vaccines that have been developed cannot accommodate differences between HBV genotypes. This research aims to design a therapeutic vaccine candidate based on the multi-epitope of HBc and HBx using reverse vaccinology (RV) and immunoinformatics approach. HBc and HBx sequences from 10 HBV genotypes were obtained from the NCBI Entrez Protein database. Epitopes were predicted from consensus sequences, which consisted of 13,610 HBc sequences and 12,333 HBx sequences. The study identified four cytotoxic T lymphocyte epitopes, two helper T lymphocyte epitopes, and five linear B lymphocyte that met the inclusion criteria. The vaccine candidate designed using cholera toxin subunit B and pan HLA DR-binding epitope adjuvants was predicted to be safe, antigenic, stable, and has a global population coverage of 99.43%. Molecular docking and molecular dynamics simulations demonstrated that the vaccine candidate could stably bind to B cell receptor, cytotoxic T cell receptor, and TLR4 for 100 ns. Immune response simulation indicated that it can induce antibody production and the proliferation of B and T cells. It can be concluded that RV and immunoinformatics successfully facilitated the design of a multi-epitope therapeutic vaccine candidate for CHB.
Collapse
Affiliation(s)
- Patricia Gita Naully
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
- Faculty of Health Sciences and Technology, Jenderal Achmad Yani University, Cimahi, West Java, Indonesia
| | - Marselina Irasonia Tan
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| | - Husna Nugrahapraja
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| | | | - Reza Aditama
- Biochemistry and Biomolecular Engineering Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| | | |
Collapse
|
2
|
Xian W, Wu D, Liu B, Hong S, Huo Z, Xiao H, Li Y. Graves' disease and inflammatory bowel disease: A bidirectional Mendelian randomization. J Clin Endocrinol Metab 2022; 108:1075-1083. [PMID: 36459455 PMCID: PMC10099169 DOI: 10.1210/clinem/dgac683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
CONTEXT Both Graves' disease (GD) and inflammatory bowel disease (IBD) are common autoimmune diseases that severely damage patients' quality of life. Previous epidemiological studies have suggested associations between GD and IBD. However, whether a causal relationship exists between these two diseases remains unknown. OBJECTIVE To infer a causal relationship between GD and IBD using bidirectional two-sample Mendelian randomization(MR). METHODS We performed bidirectional two-sample MR to infer a causal relationship between GD and IBD using GWAS summary data obtained from Biobank Japan (BBJ) and the International Inflammatory Bowel Disease Genetic Consortium (IIBDGC). Several methods (random-effect inverse variance weighted, weighted median, MR‒Egger regression, and MR-PRESSO) were used to ensure the robustness of the causal effect. Heterogeneity was measured based on Cochran's Q value. Horizontal pleiotropy was evaluated by MR‒Egger regression and leave-one-out analysis. RESULTS Genetically predicted IBD may increase the risk of GD by 24% (OR 1.24, 95% CI 1.01-1.52, p = 0.041). Crohn's disease (CD) may increase the risk of GD, whereas ulcerative colitis (UC) may prevent patients from developing GD. Conversely, genetically predicted GD may slightly increase the risk of CD, although evidence indicating that the presence of GD increased the risk of UC or IBD was lacking. Outlier-corrected results were consistent with raw causal estimates. CONCLUSIONS Our study revealed a potentially higher comorbidity rate for GD and CD. However, UC might represent a protective factor for GD. The underlying mechanism and potential common pathways await discovery.
Collapse
Affiliation(s)
- Wei Xian
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dide Wu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Boyuan Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zijun Huo
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Hermawan A, Damai FI, Martin L, Chrisdianto M, Julianto NM, Pramanda IT, Gustiananda M. Immunoinformatics Analysis of Citrullinated Antigen as Potential Multi-peptide Lung Cancer Vaccine Candidates for Indonesian Population. Int J Pept Res Ther 2022; 28:162. [PMID: 36406283 PMCID: PMC9648882 DOI: 10.1007/s10989-022-10467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/12/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer which has the highest mortality rate in Indonesia. One of the trends in treating cancer is by utilizing peptide vaccines, an immunotherapeutic approach that aims to stimulate the cell-mediated adaptive immune system to recognize cancer-associated peptides. Currently, no peptide vaccines are available in the market for NSCLC treatment. Therefore, this project aims to develop a multi-epitope peptide-based vaccine for NSCLC utilizing citrullinated peptides. Citrullination is a post-translational modification that occurs in cancer cells during autophagy that functions to induce immune responses towards modified self-epitopes such as tumor cells, through activation of PAD enzymes within the APC and target cells. It was found that introducing a common citrullinated neo-antigen peptide such as vimentin and enolase to the immune system could stimulate a higher specific CD4+ T cell response against NSCLC. Moreover, carcinoembryonic antigen (CEA), an antigen that is highly expressed in cancer cells, is also added to increase the vaccine’s specificity and to mobilize both CD4+ and CD8+ T cells. These antigens bind strongly to the MHC Class II alleles such as HLA-DRB1*07:01 and HLA-DRB*11:01, which are predominant alleles in Indonesian populations. Through in silico approach, the peptides generated from CEA, citrullinated vimentin and enolase, were analyzed for their MHC binding strength, immunogenicity, ability to induce IFNγ response, and population coverage. It is expected that the immunodominant antigens presentation is able to induce a potent immune response in NSCLC patients in Indonesia, resulting in tumor eradication.
Collapse
Affiliation(s)
- Angelika Hermawan
- Biomedicine Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Fedric Intan Damai
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Leon Martin
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Matthew Chrisdianto
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | | | - Ihsan Tria Pramanda
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Marsia Gustiananda
- Biomedicine Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| |
Collapse
|
4
|
Mustopa AZ, Meilina L, Irawan S, Ekawati N, Fathurahman AT, Triratna L, Kusumawati A, Prastyowati A, Nurfatwa M, Hertati A, Harmoko R. Construction, expression, and in vitro assembly of virus-like particles of L1 protein of human papillomavirus type 52 in Escherichia coli BL21 DE3. J Genet Eng Biotechnol 2022; 20:19. [PMID: 35132511 PMCID: PMC8821762 DOI: 10.1186/s43141-021-00281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
A major discovery in human etiology recognized that cervical cancer is a consequence of an infection caused by some mucosatropic types of human papillomavirus (HPV). Since L1 protein of HPV is able to induce the formation of neutralizing antibodies, it becomes a protein target to develop HPV vaccines. Therefore, this study aims to obtain and analyze the expression of HPV subunit recombinant protein, namely L1 HPV 52 in E. coli BL21 DE3. The raw material used was L1 HPV 52 protein, while the synthetic gene, which is measured at 1473 bp in pD451-MR plasmid, was codon-optimized (ATUM) and successfully integrated into 5643 base pairs (bps) of pETSUMO. Bioinformatic studies were also conducted to analyze B cell epitope, T cell epitope, and immunogenicity prediction for L1HPV52 protein.
Results
The pETSUMO-L1HPV52 construct was successfully obtained in a correct ligation size when it was cut with EcoRI. Digestion by EcoRI revealed a size of 5953 and 1160 bps for both TA cloning petSUMO vector and gene of interest, respectively. Furthermore, the right direction of construct pETSUMO-L1HPV52 was proven by PCR techniques using specific primer pairs then followed by sequencing, which shows 147 base pairs. Characterization of L1 HPV 52 by SDS-PAGE analysis confirms the presence of a protein band at a size of ~55 kDa with 6.12 mg/L of total protein concentration. Observation under by transmission electron microscope demonstrates the formation of VLP-L1 at a size between 30 and 40 nm in assembly buffer under the condition of pH 5.4. Based on bioinformatics studies, we found that there are three B cell epitopes (GFPDTSFYNPET, DYLQMASEPY, KEKFSADLDQFP) and four T cell epitopes (YLQMASEPY, PYGDSLFFF, DSLFFFLRR, MFVRHFFNR). Moreover, an immunogenicity study shows that among all the T cell epitopes, the one that has the highest affinity value is DSLFFFLRR for Indonesian HLAs.
Conclusion
Regarding the achievement on successful formation of L1 HPV52-VLPs, followed by some possibilities found from bioinformatics studies, this study suggests promising results for future development of L1 HPV type 52 vaccine in Indonesia.
Collapse
|
5
|
Soetjipto, Rochmah N, Faizi M, Hisbiyah Y, Endaryanto A. HLA-DQA1 and HLA-DQB1 Gene Polymorphism in Indonesian Children with Type I Diabetes Mellitus. Appl Clin Genet 2022; 15:11-17. [PMID: 35046698 PMCID: PMC8763574 DOI: 10.2147/tacg.s348115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/18/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND More than 40 genes influence the progression of type 1 diabetes mellitus (T1DM), including human leukocyte antigen (HLA) alleles. Different HLA genotype patterns result in diverse rates of T1DM development. HLA class II DR, DQ, and DP vary among different populations and ethnicities. Data on HLA polymorphism in T1DM in Indonesia are lacking. Therefore, this study was designed to evaluate the gene polymorphism of HLA-DQA1 and HLA-DQB1 in Indonesian children with T1DM. PATIENTS AND METHODS In this study, 31 patients with T1DM and 31 controls were enrolled from April 2020 to April 2021. This study was conducted at Dr. Soetomo Hospital, Indonesia. We evaluated the gene polymorphism of HLA-DQA1 and HLA-DQB1 using polymerase chain reaction-restriction fragment length polymorphism. The primers used were as follows: for HLA-DQA1, DQAS34: 5'-GGTGTAAACTTGTACCAG-3' (forward) and DQAA261: 5'-ATTGGTAGCAGCGGTAGA-3' (reverse); for HLA-DQB1, DQBS43: 5'-TGCTACT- TCACCAA(C/T)GGG-3' (forward) and DQBA249: 5'-GTAGTTGTGTCTGCA (C/T)AC-3' (reverse). RESULTS The most common HLA-DQA1 subtype in the T1DM group was 0101/0102 accounting for 67.6%, and 01/03 and 02/03 were found in the T1DM group only. Meanwhile, the most common HLA-DQB1 subtype in the T1DM group was 0301, accounting for 54.8%. Most subjects in this study were Javanese. CONCLUSION HLA-DQA1 0101/0102 and HLA-DQB1 0301 were commonly found in Indonesian children with T1DM.
Collapse
Affiliation(s)
- Soetjipto
- Department of Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Nur Rochmah
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Faculty of Medicine, Department of Child Health, Dr. Soetomo General Hospital, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Muhammad Faizi
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Faculty of Medicine, Department of Child Health, Dr. Soetomo General Hospital, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Yuni Hisbiyah
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Faculty of Medicine, Department of Child Health, Dr. Soetomo General Hospital, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Anang Endaryanto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Faculty of Medicine, Department of Child Health, Dr. Soetomo General Hospital, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
6
|
Evaluation of Human Leukocyte Antigen Class I and Class II in End-Stage Renal Disease Occurrence in Indonesian Transplantation Patients. Int J Nephrol 2021; 2021:4219822. [PMID: 34671491 PMCID: PMC8523260 DOI: 10.1155/2021/4219822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Background Genetic studies of end-stage renal disease (ESRD), including those of human leukocyte antigen (HLA) genes, have been reported in several populations but have not yet been evaluated in Indonesia. Some studies have reported that these genes had a substantial role in ESRD. This study aims to analyze the association between HLA genes and ESRD within the Indonesian community. Method A retrospective study to investigate HLA class I and II alleles to find out the distribution of HLA-A, -B, -C, -DPB1, -DQB1, and -DRB1 in renal transplant recipients and to ascertain their role in susceptibility to ESRD was performed on totally 149 subjects, consisting of 69 ESRD patients and 80 healthy controls. HLA typing was determined using Luminex techniques. The allele and haplotype frequencies were compared between ESRD patients and controls. Result High-frequency alleles were HLA-A∗24 (43.6%), B∗15 (38.2%), C∗08 (30.8%), DRB1∗12 (47.3%), DQB1∗03 (50.6%), and DPB1∗13 (22.5%). HLA-A∗24 (p=0.01) and HLA-B∗35 (p=0.02) were associated with a protective effect, with OR 0.537 (95%CI 0.34–0.86) and 0.316 (95%CI 0.11–0.88), respectively. There were some two-locus haplotypes associated with susceptibility to ESRD, such as B∗15-DRB1∗12, B∗13-DRB1∗15, A∗02-B∗15, A∗02-C∗08, and B∗13-DQB1∗05. HLA-A∗02-B∗15-DRB1∗12 and A∗24-B∗13-DRB1∗15 appear to be associated with susceptibility to ESRD. Conclusion The allele groups of HLA-A∗24 and HLA-B∗35 are associated with protection from ESRD. Meanwhile, HLA-B∗13-DRB1∗15 and A∗24-B∗13-DRB1∗15 are the most frequent HLAs associated with ESRD in two-locus and three-locus haplotype, respectively.
Collapse
|
7
|
Enciso-Vargas M, Alvarado-Ruíz L, Suárez-Villanueva AS, Macías-Barragán J, Montoya-Buelna M, Oceguera-Contreras E, Alvarado-Navarro A, Graciano-Machuca O. Association Study between Psoriatic Arthritis and Killer Immunoglobulin-Like Receptor ( KIR) Genes: A Meta-Analysis. Immunol Invest 2020; 50:152-163. [PMID: 31957514 DOI: 10.1080/08820139.2020.1713145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Psoriatic Arthritis (PsA) is a seronegative spondyloarthropathy frequently associated with psoriasis. Studies have shown different members of the KIR (Killer Immunoglobulin-like Receptor) gene family may act as potential susceptibility factors; however, data have been inconsistent or with a reduced sample size. Therefore, the objective of this investigation was to determine associations between KIR genes and PsA susceptibility a meta-analysis approach. Methods: We performed a systemic search on PubMed, Scopus, and Web of Science to identify association studies linking KIR genes with PsA susceptibility. The search cut-off was May 2019. Odds Ratio (OR), 95% Confidence Intervals (95% CI), and forest plots were obtained for each KIR gene. Publication bias was evaluated by Begg and Egger linear regression tests. Results: Five articles were included in this meta-analysis. The KIR2DL2, 2DS1, 2DS2, and 2DS3 genes were positively associated with susceptibility to PsA (OR = 1.269, p = .003; OR = 1.392, p < .001; OR = 1.279, p = .002; and OR = 1.230, p = .038, respectively). In Caucasians, positive association with susceptibility to PsA were maintained by KIR2DL2, 2DS1, and 2DS2 genes (OR = 1.257, p = .005; OR = 1.535, p = .003; and OR = 1.267, p = .004, respectively). Conclusion: These associations suggest that KIR2DL2, 2DS1, 2DS2, and 2DS3 genes are susceptibility factors for PsA.
Collapse
Affiliation(s)
- Moisés Enciso-Vargas
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara (UDG) , Ocotlán, México
| | - Liliana Alvarado-Ruíz
- Escuela de Ciencias de la Salud, Campus Zapopan, Universidad del Valle de México , Zapopan, México
| | - Alexis Sayuri Suárez-Villanueva
- Escuela de Ciencias de la Salud, Campus Zapopan, Universidad del Valle de México , Zapopan, México.,Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, UDG , Zapopan, México
| | - José Macías-Barragán
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (CUValles), UDG , Ameca, México
| | - Margarita Montoya-Buelna
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), UDG , Guadalajara, México
| | - Edén Oceguera-Contreras
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (CUValles), UDG , Ameca, México
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, CUCS, UDG , Guadalajara, México
| | - Omar Graciano-Machuca
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (CUValles), UDG , Ameca, México
| |
Collapse
|