1
|
Alalem M, Dabous E, Awad AM, Alalem N, Guirgis AA, El-Masry S, Khalil H. Influenza a virus regulates interferon signaling and its associated genes; MxA and STAT3 by cellular miR-141 to ensure viral replication. Virol J 2023; 20:183. [PMID: 37596622 PMCID: PMC10439583 DOI: 10.1186/s12985-023-02146-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023] Open
Abstract
The antiviral response against influenza A virus (IAV) infection includes the induction of the interferon (IFN) signaling pathway, including activation of the STATs protein family. Subsequently, antiviral myxovirus resistance (MxA) protein and other interferon-stimulated genes control virus replication; however, the molecular interaction of viral-mediated IFN signaling needs more investigation. Host microRNAs (miRNAs) are small non-coding molecules that posttranscriptionally regulate gene expression. Here, we sought to investigate the possible involvement of miR-141 in IAV-mediated IFN signaling. Accordingly, the microarray analysis of A549 cells transfected with precursor miR-141 (pre-miR-141) was used to capture the potentially regulated genes in response to miR-141 overexpression independent of IAV infection. The downregulation of targeted genes by miR-141, in addition to viral gene expression, was investigated by quantitative real-time PCR, western blot analysis, and flow cytometric assay. Our findings showed a significant upregulation of miR-141 in infected A549 cells with different strains of IAV. Notably, IAV replication was firmly interrupted in cells transfected with the miR-141 inhibitor. While its replication significantly increased in cells transfected with pre-miR-141 confirming the crucial role of miRNA-141 in supporting virus replication. Interestingly, the microarray data of miR-141 transduced A549 cells showed many downregulated genes, including MxA, STAT3, IFI27, and LAMP3. The expression profile of MxA and STAT3 was significantly depleted in infected cells transfected with the pre-miR-141, while their expression was restored in infected cells transfected with the miR-141 inhibitor. Unlike interleukin 6 (IL-6), the production of IFN-β markedly decreased in infected cells that transfected with pre-miR-141, while it significantly elevated in infected cells transfected with miR-141 inhibitor. These data provide evidence for the crucial role of miR-141 in regulating the antiviral gene expression induced by IFN and IL-6 signaling during IAV infection to ensure virus replication.
Collapse
Affiliation(s)
- Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Emad Dabous
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Ahmed M Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Nedaa Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Adel A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Samir El-Masry
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 79, Egypt.
| |
Collapse
|
2
|
Guirgis SA, El-Halfawy KA, Alalem M, Khalil H. Legionellapneumophila induces methylomic changes in ten-eleven translocation to ensure bacterial reproduction in human lung epithelial cells. J Med Microbiol 2023; 72. [PMID: 36927577 DOI: 10.1099/jmm.0.001676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Introduction. Legionella pneumophila is a Gram-negative flagellated bacteria that can infect human lungs and cause a severe form of pneumonia named Legionnaires' disease.Hypothesis. We hypothesize that L. pneumophila infection induces methylomic changes in methylcytosine dioxygenases, ten-eleven translocation (TET) genes, and controls DNA methylation following infection.Aim. In the current research, we sought to further investigate DNA methylation changes in human lung epithelial cells upon L. pneumophila infection and determine how methylation inhibitor agents disturb L. pneumophila reproduction.Methodology. A549 cell line was used in L. pneumophila infection and inhibitors' treatment, including 5-azacytidine (5-AZA) and (-)-epigallocatechin-3-O-gallate (EGCG).Results. Interestingly, DNA methylation analysis of infected A549 using sodium bisulfite PCR and the methylation-sensitive HpaII enzyme showed potential methylation activity within the promoter regions of ten-eleven translocation (TET) genes located on CpG/397-8 and CpG/385-6 of TET1 and TET3, respectively. Such methylation changes in TET effectors decreased their expression profile following infection, indicated by quantitative real-time PCR (RT-qPCR), immunoblotting and flow cytometry. Furthermore, pre-treatment of A549 cells with 5-AZA or EGCG significantly decreased the bacterial reproduction characterized by the expression of L. pneumophila 16S ribosomal RNA and the c.f.u. ml-1 of bacterial particles. Moreover, both methylation inhibitors showed potent inhibition of methionine synthase (MS) expression, which was further confirmed by the docking analysis of inhibitor ligands and crystal structure of MS protein.Conclusion. These data provide evidence for the methylomic changes in the promoter region of TET1 and TET3 by L. pneumophila infection in the A549 cell line and suggest the anti-bacterial properties of 5-AZA and EGCG, as methylation inhibitors, are due to targeting the epigenetic effector methionine synthase.
Collapse
Affiliation(s)
- Sherry A Guirgis
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Khalil A El-Halfawy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Mai Alalem
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| |
Collapse
|
3
|
Fekry T, Salem M, Abd-Elaziz A, Muawia S, Naguib Y, Khalil H. Anticancer Properties of Selenium-Enriched Mushroom, Pleurotus ostreatus, in Colon Cancer In-Vitro. Int J Med Mushrooms 2022; 24:1-20. [DOI: 10.1615/intjmedmushrooms.2022045181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
El-Fadl HMA, Hagag NM, El-Shafei RA, Khayri MH, El-Gedawy G, Maksoud AIAE, Mohamed DD, Mohamed DD, El Halfawy I, Khoder AI, Elawdan KA, Elshal MF, Salah A, Khalil H. Effective Targeting of Raf-1 and Its Associated Autophagy by Novel Extracted Peptide for Treating Breast Cancer Cells. Front Oncol 2021; 11:682596. [PMID: 34513674 PMCID: PMC8430328 DOI: 10.3389/fonc.2021.682596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/05/2021] [Indexed: 02/03/2023] Open
Abstract
Breast cancer is one of the most common causes of death in women worldwide and has harmful influence on their psychological state during therapy. Multikinase inhibitors have become effective drugs for treating a variety of cancer diseases such as breast cancer. A purified short peptide (H-P) was isolated from the natural honey and tested for its potential regulatory role in breast cancer cells compared with the effectiveness of the anticancer drug, Sorafenib (SOR), using MCF-7, EFM-19, and MCF-10A cell lines. Furthermore, we investigated the direct connection between Raf-1 activation and cellular autophagy as potential targets of SOR and H-P extract using RNA interference. Interestingly, the treatment with H-P showed competitive regulation of phosphorylated Raf-1, MEK1/2, and matched autophagy-related LC3B without any detectable toxic effects in the non-tumorigenic epithelial cells. Unlike SOR, the regulation of Raf-1 protein and autophagic machinery by the novel H-P extract showed neglected levels of the released proinflammatory cytokine. This regulation of cytokine secretion by H-P resulted in decreasing the expression level of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) in treated cells. Moreover, the transfection of MCF-7 cells with small interference RNA (siRNA) antagonist Raf-1 expression markedly reduced the expression of LC3B, while it increased the expression of NF-kB1 and NF-kB2, indicating the potential cross-link between Raf-1, autophagy, and NF-kB effector. Collectively, these findings suggest that H-P-mediated Raf-1, MEK1/2, LC3B, and NF-kB provide a novel and efficacious multikinase inhibitor for treating breast cancer without detectable cytotoxic effects.
Collapse
Affiliation(s)
- Hebatullah M. Abou El-Fadl
- Genome Department, Animal Health Research Institute, Cairo, Egypt
- Pharmacology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Naglaa M. Hagag
- Genome Department, Animal Health Research Institute, Cairo, Egypt
| | - Reham A. El-Shafei
- Pharmacology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed H. Khayri
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Gamalat El-Gedawy
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menofyia University, Shebin El-Kom, Egypt
| | - Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Doaa D. Mohamed
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Dalia D. Mohamed
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ibrahim El Halfawy
- Department of Molecular Diagnostics, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed I. Khoder
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khaled A. Elawdan
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Mohamed F. Elshal
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
5
|
Ning S, Li Z, Ji Z, Fan D, Wang K, Wang Q, Hua L, Zhang J, Meng X, Yuan Y. MicroRNA‑494 suppresses hypoxia/reoxygenation‑induced cardiomyocyte apoptosis and autophagy via the PI3K/AKT/mTOR signaling pathway by targeting SIRT1. Mol Med Rep 2020; 22:5231-5242. [PMID: 33174056 PMCID: PMC7646990 DOI: 10.3892/mmr.2020.11636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Acute myocardial infarction can be caused by ischemia/reperfusion (I/R) injury; however, the mechanism underlying I/R is not completely understood. The present study investigated the functions and mechanisms underlying microRNA (miR)-494 in I/R-induced cardiomyocyte apoptosis and autophagy. Hypoxia/reoxygenation (H/R)-treated H9c2 rat myocardial cells were used as an in vitro I/R injury model. Apoptosis and autophagy were analyzed by Cell Counting Kit-8 assay, Lactic dehydrogenase and superoxide dismutase assay, flow cytometry, TUNEL staining and western blotting. Reverse transcription-quantitative PCR demonstrated that, H9c2 cells treated with 12 h hypoxia and 3 h reoxygenation displayed significantly downregulated miR-494 expression levels compared with control cells. Compared with the corresponding negative control (NC) groups, miR-494 mimic reduced H/R-induced cell apoptosis and autophagy, whereas miR-494 inhibitor displayed the opposite effects. Silent information regulator 1 (SIRT1) was identified as a target gene of miR-494. Furthermore, miR-494 inhibitor-mediated effects on H/R-induced cardiomyocyte apoptosis and autophagy were partially reversed by SIRT1 knockdown. Moreover, compared with si-NC, SIRT1 knockdown significantly increased the phosphorylation levels of PI3K, AKT and mTOR in H/R-treated and miR-494 inhibitor-transfected H9c2 cells. Collectively, the results indicated that miR-494 served a protective role against H/R-induced cardiomyocyte apoptosis and autophagy by directly targeting SIRT1, suggesting that miR-494 may serve as a novel therapeutic target for myocardial I/R injury.
Collapse
Affiliation(s)
- Shuwei Ning
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Zhiying Li
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Zhenyu Ji
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dandan Fan
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Keke Wang
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Qian Wang
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Lei Hua
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Junyue Zhang
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Xiangguang Meng
- Laboratory of Cardiovascular Disease and Drug Research, Zhengzhou No. 7 People's Hospital, Zhengzhou, Henan 450016, P.R. China
| | - Yiqiang Yuan
- Department of Cardiovascular Internal Medicine, Henan Provincial Chest Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|