1
|
Srivastava S, Rasool M. Genetics, epigenetics and autoimmunity constitute a Bermuda triangle for the pathogenesis of rheumatoid arthritis. Life Sci 2024; 357:123075. [PMID: 39341491 DOI: 10.1016/j.lfs.2024.123075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Rheumatoid arthritis (RA), a multigene disorder with a heritability rate of 60 %, is characterized by persistent pain, synovial hyperplasia, and cartilage and bone destruction, ultimately causing irreversible joint deformity. The etiology and pathogenesis of rheumatoid arthritis (RA) are primarily influenced by specific genetic variants, particularly HLA alleles such as HLA-DRB1*01 and DRB1*04. However, other HLA alleles such as HLA-DRB1*10 and DPB*1 have also been found to contribute to increased susceptibility to RA. However, non-HLA genes also confer a comparatively high risk of RA disease manifestation. The most relevant single nucleotide polymorphisms (SNPs) associated with non-HLA genes are PTPN22, TRAF1, CXCL-12, TBX-5, STAT4, FCGR, PADI4, and MTHFR. In conjunction with genetic susceptibility, epigenetic alterations orchestrate paramount involvement in regulating RA pathogenesis. Increasing evidence implicates DNA methylation and histone protein modifications, including acetylation and methylation, as the primary epigenetic mechanisms that drive the pathogenesis and clinical progression of the disease. In addition to genetic and epigenetic changes, autoimmune inflammation also determines the pathological progression of the synovial membrane in joints with RA. Glycosylation changes, such as sialylation and fucosylation, in immune cells have been shown to be relevant to disease progression. Genetic heterogeneity, epigenetic factors, and changes in glycosylation do not fully explain the features of RA. Therefore, investigating the interplay between genetics, epigenetics, and autoimmunity is crucial. This review highlights the significance and interaction of these elements in RA pathophysiology, suggesting their diagnostic potential and opening new avenues for novel therapeutic approaches.
Collapse
Affiliation(s)
- Susmita Srivastava
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
2
|
Shan M, Zhao X, Sun P, Qu X, Cheng G, Qin LP. Revisiting Structure-activity Relationships: Unleashing the potential of selective Janus kinase 1 inhibitors. Bioorg Chem 2024; 149:107506. [PMID: 38833989 DOI: 10.1016/j.bioorg.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Janus kinases (JAKs), a kind of non-receptor tyrosine kinases, the function has been implicated in the regulation of cell proliferation, differentiation and apoptosis, immune, inflammatory response and malignancies. Among them, JAK1 represents an essential target for modulating cytokines involved in inflammation and immune function. Rheumatoid arthritis, atopic dermatitis, ulcerative colitis and psoriatic arthritis are areas where approved JAK1 drugs have been applied for the treatment. In the review, we provided a brief introduction to JAK1 inhibitors in market and clinical trials. The structures of high active JAK1 compounds (IC50 ≤ 0.1 nM) were highlighted, with primary focus on structure-activity relationship and selectivity. Moreover, the druggability processes of approved drugs and high active compounds were analyzed. In addition, the issues involved in JAK1 compounds clinical application as well as strategies to surmount these challenges, were discussed.
Collapse
Affiliation(s)
- Mengyi Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xuan Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Peng Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xinhao Qu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Gang Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
3
|
Kiełbowski K, Plewa P, Bratborska AW, Bakinowska E, Pawlik A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int J Mol Sci 2024; 25:8327. [PMID: 39125897 PMCID: PMC11311960 DOI: 10.3390/ijms25158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| |
Collapse
|
4
|
Cossu AM, Melisi F, Noviello TMR, Pasquale LS, Grisolia P, Reale C, Bocchetti M, Falco M, Tammaro C, Accardo N, Longo F, Allosso S, Mesolella M, Addeo R, Perri F, Ottaiano A, Ricciardiello F, Amler E, Ambrosino C, Misso G, Ceccarelli M, Caraglia M, Scrima M. MiR-449a antagonizes EMT through IL-6-mediated trans-signaling in laryngeal squamous cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102140. [PMID: 38425711 PMCID: PMC10901858 DOI: 10.1016/j.omtn.2024.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
MicroRNAs (miRNAs) are involved in post-transcriptional gene expression regulation and in mechanisms of cancer growth and metastases. In this light, miRNAs could be promising therapeutic targets and biomarkers in clinical practice. Therefore, we investigated if specific miRNAs and their target genes contribute to laryngeal squamous cell carcinoma (LSCC) development. We found a significant decrease of miR-449a in LSCC patients with nodal metastases (63.3%) compared with patients without nodal involvement (44%). The AmpliSeq Transcriptome of HNO-210 miR-449a-transfected cell lines allowed the identification of IL6-R as a potential target. Moreover, the downregulation of IL6-R and the phosphorylation reduction of the downstream signaling effectors, suggested the inhibition of the IL-6 trans-signaling pathway. These biochemical effects were paralleled by a significant inhibition of invasion and migration in vitro and in vivo, supporting an involvement of epithelial-mesenchymal transition. These findings indicate that miR-449a contributes to suppress the metastasization of LSCC by the IL-6 trans-signaling block and affects sensitivity to external stimuli that mimic pro-inflammatory conditions.
Collapse
Affiliation(s)
- Alessia Maria Cossu
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Federica Melisi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Teresa Maria Rosaria Noviello
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Napoli, Italy
| | - Lucia Stefania Pasquale
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Piera Grisolia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Carla Reale
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Michela Falco
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Chiara Tammaro
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Nunzio Accardo
- Ear, Nose, and Throat Unit, AORN "Antonio Cardarelli", Naples, Italy
| | - Francesco Longo
- Head and Neck Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Salvatore Allosso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, UOC Federico II, 80121 Naples, Italy
| | - Massimo Mesolella
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, UOC Federico II, 80121 Naples, Italy
| | - Raffaele Addeo
- Medical Oncology Unit, San Giovanni di Dio Hospital, 80027 Frattamaggiore, Italy
| | - Francesco Perri
- Head and Neck Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Abdominal Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | | | - Evzen Amler
- UCEEB, Czech Technical University, Třinecká 1024, 273 43 Buštěhrad, Czech
| | - Concetta Ambrosino
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Michele Ceccarelli
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Napoli, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Marianna Scrima
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| |
Collapse
|
5
|
Shafiey SI, Ahmed KA, Abo-Saif AA, Abo-Youssef AM, Mohamed WR. Galantamine mitigates testicular injury and disturbed spermatogenesis in adjuvant arthritic rats via modulating apoptosis, inflammatory signals, and IL-6/JAK/STAT3/SOCS3 signaling. Inflammopharmacology 2024; 32:405-418. [PMID: 37429998 PMCID: PMC10907493 DOI: 10.1007/s10787-023-01268-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/17/2023] [Indexed: 07/12/2023]
Abstract
Rheumatoid arthritis (RA) affects the joints and the endocrine system via persistent immune system activation. RA patients have a higher frequency of testicular dysfunction, impotence, and decreased libido. This investigation aimed to evaluate the efficacy of galantamine (GAL) on testicular injury secondary to RA. Rats were allocated into four groups: control, GAL (2 mg/kg/day, p.o), CFA (0.3 mg/kg, s.c), and CFA + GAL. Testicular injury indicators, such as testosterone level, sperm count, and gonadosomatic index, were evaluated. Inflammatory indicators, such as interleukin-6 (IL-6), p-Nuclear factor kappa B (NF-κB p65), and anti-inflammatory cytokine interleukin-10 (IL-10), were assessed. Cleaved caspase-3 expression was immunohistochemically investigated. Protein expressions of Janus kinase (JAK), signal transducers and activators of transcription (STAT3), and Suppressors of Cytokine Signaling 3 (SOCS3) were examined by Western blot analysis. Results show that serum testosterone, sperm count, and gonadosomatic index were increased significantly by GAL. Additionally, GAL significantly diminished testicular IL-6 while improved IL-10 expression relative to CFA group. Furthermore, GAL attenuated testicular histopathological abnormalities by CFA and downregulated cleaved caspase-3 and NF-κB p65 expressions. It also downregulated JAK/STAT3 cascade with SOCS3 upregulation. In conclusion, GAL has potential protective effects on testicular damage secondary to RA via counteracting testicular inflammation, apoptosis, and inhibiting IL-6/JAK/STAT3/SOCS3 signaling.
Collapse
Affiliation(s)
- Sara I Shafiey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
6
|
Tong Y, Li X, Deng Q, Shi J, Feng Y, Bai L. Advances of the small molecule drugs regulating fibroblast-like synovial proliferation for rheumatoid arthritis. Front Pharmacol 2023; 14:1230293. [PMID: 37547337 PMCID: PMC10400780 DOI: 10.3389/fphar.2023.1230293] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a type of chronic autoimmune and inflammatory disease. In the pathological process of RA, the alteration of fibroblast-like synoviocyte (FLS) and its related factors is the main influence in the clinic and fundamental research. In RA, FLS exhibits a uniquely aggressive phenotype, leading to synovial hyperplasia, destruction of the cartilage and bone, and a pro-inflammatory environment in the synovial tissue for perpetuation and progression. Evidently, it is a highly promising way to target the pathological function of FLS for new anti-RA drugs. Based on this, we summed up the pathological mechanism of RA-FLS and reviewed the recent progress of small molecule drugs, including the synthetic small molecule compounds and natural products targeting RA-FLS. In the end, there were some views for further action. Compared with MAPK and NF-κB signaling pathways, the JAK/STAT signaling pathway has great potential for research as targets. A small number of synthetic small molecule compounds have entered the clinic to treat RA and are often used in combination with other drugs. Meanwhile, most natural products are currently in the experimental stage, not the clinical trial stage, such as triptolide. There is an urgent need to unremittingly develop new agents for RA.
Collapse
Affiliation(s)
- Yitong Tong
- Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Chen Y, Shen J, Wu Y, Fang L, Xu S, Peng Y, Pan F. Associations between urinary phthalate metabolite concentrations and rheumatoid arthritis in the U.S. adult population. CHEMOSPHERE 2023:139382. [PMID: 37394194 DOI: 10.1016/j.chemosphere.2023.139382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Phthalates are ubiquitous environmental contaminants. Nevertheless, limited data is available about the impacts of phthalates on rheumatoid arthritis (RA). The purpose of this study was to use National Health and Nutrition Examination Survey (NHANES) data from 2005 to 2018 to assess the individual and combined effects of exposure to phthalate mixtures on RA in adults. A total of 8240 participants with complete data participated in the study, of whom 645 had RA. The levels of ten phthalate metabolites were detected in urine samples. In the single-pollutant models, independent associations were identified between urinary mono-(carboxyoctyl) phthalate (MCOP), mono-(3-carboxylpropyl) phthalate (MCPP), mono-isobutyl phthalate (MiBP) and mono-benzyl phthalate (MBzP) with the incidence of RA. The results of multi-pollutant models, including weighted quantile sum (WQS) regression, quantile-based g computation (qgcomp), and Bayesian kernel machine regression (BKMR) approaches consistently revealed that co-exposure to phthalates was positively associated with RA incidence. Such association was more pronounced in adults over 60 years of age, where MCOP was identified as the dominant positive driver. Overall, our findings add novel evidence that co-exposures to phthalates might be positively associated with RA incidence. Given the limitations of the NHANES study, well-designed longitudinal studies are required to verify or disprove these results.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Jiran Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ye Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yongzhen Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
8
|
Srivastava S, Rasool M. Underpinning IL-6 biology and emphasizing selective JAK blockade as the potential alternate therapeutic intervention for rheumatoid arthritis. Life Sci 2022; 298:120516. [DOI: 10.1016/j.lfs.2022.120516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
|