1
|
Song Y, Wang Y, Li J, Shen Y, Hou Y, Fu Z, Fang L, Jin B, Chen L. CD226 promotes renal fibrosis by regulating macrophage activation and migration. J Leukoc Biol 2024; 116:103-117. [PMID: 38660893 DOI: 10.1093/jleuko/qiae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 04/26/2024] Open
Abstract
It has been found that CD226 plays an important role in regulating macrophage function, but its expression and function in macrophages during renal fibrogenesis have not been studied. Our data demonstrated that CD226 expression in macrophages was obviously upregulated in the unilateral ureteral obstruction model, while CD226 deficiency attenuated collagen deposition in renal interstitium along with fewer M1 within renal cortex and renal medulla and a lower level of proinflammatory factors compared to that of control littermates. Further studies demonstrated that Cd226-/- bone marrow-derived macrophages transferring could significantly reduce the tubular injury, collagen deposition, and proinflammatory cytokine secretion compared with that of Cd226+/+ bone marrow-derived macrophages transferring in the unilateral ureteral obstruction model. Mechanistic investigations revealed that CD226 promoted proinflammatory M1 macrophage accumulation in the kidney via suppressing KLF4 expression in macrophages. Therefore, our results uncovered a pathogenic role of CD226 during the development of chronic kidney disease by promoting monocyte infiltration from peripheral blood into the kidney and enhancing macrophage activation toward the inflammatory phenotype by suppressing KLF4 expression.
Collapse
Affiliation(s)
- Yun Song
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Yazhen Wang
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Juan Li
- College of Life Sciences, Northwest University, No.229, Taibai North Road, Beilin District, Xi'an 710069, ShaanXi, China
| | - Yuting Shen
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Yongli Hou
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Zhaoyue Fu
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Liang Fang
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Boquan Jin
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Lihua Chen
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
- College of Life Sciences, Northwest University, No.229, Taibai North Road, Beilin District, Xi'an 710069, ShaanXi, China
| |
Collapse
|
2
|
Zhou W, Li Y, Hou Y, Dan W, Chen L, Shi F, Zhao F, Fang L. Simulated microgravity increases CD226 + Lin - CD117 - Sca1 + mesenchymal stem cells in mice. Physiol Rep 2024; 12:e15971. [PMID: 38467556 DOI: 10.14814/phy2.15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Microgravity is one of the most common causes counting for the bone loss. Mesenchymal stem cells (MSCs) contribute greatly to the differentiation and function of bone related cells. The development of novel MSCs biomarkers is critical for implementing effective therapies for microgravity induced bone loss. We aimed to find the new molecules involved in the differentiation and function of MSCs in mouse simulated microgravity model. We found CD226 was preferentially expressed on a subset of MSCs. Simulation of microgravity treatment significantly increased the proportion of CD226+ Lin- CD117- Sca1+ MSCs. The CD226+ MSCs produced higher IL-6, M-CSF, RANKL and lower CD200 expression, and promoted osteoclast differentiation. This study provides pivotal information to understand the role of CD226 in MSCs, and inspires new ideas for prevention of bone loss related diseases.
Collapse
Affiliation(s)
- Wenjing Zhou
- College of Life Sciences, Northwest University, Xi' an, China
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yi Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China
- Medical School of Yan'an University, Yan'an, China
| | - Yongli Hou
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wenli Dan
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Fang Zhao
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Liang Fang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Brauneck F, Oliveira-Ferrer L, Muschhammer J, Sturmheit T, Ackermann C, Haag F, Schulze zur Wiesch J, Ding Y, Qi M, Hell L, Schmalfeldt B, Bokemeyer C, Fiedler W, Wellbrock J. Immunosuppressive M2 TAMs represent a promising target population to enhance phagocytosis of ovarian cancer cells in vitro. Front Immunol 2023; 14:1250258. [PMID: 37876933 PMCID: PMC10593434 DOI: 10.3389/fimmu.2023.1250258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Tumor-associated macrophages (TAMs) represent an important cell population within the tumor microenvironment, but little is known about the phenotype and function of these cells. The present study aims to characterize macrophages in high-grade serous ovarian cancer (HGSOC). Methods Phenotype and expression of co-regulatory markers were assessed on TAMs derived from malignant ascites (MA) or peripheral blood (PB) by multiparametric flow cytometry. Samples were obtained from HGSOC patients (n=29) and healthy donors (HDs, n=16). Additional expression analysis was performed by RNAseq (n=192). Correlation with clinically relevant parameters was conducted and validated by a second patient cohort (n=517). Finally, the role of TIGIT in repolarization and phagocytosis was investigated in vitro. Results Expression of the M2-associated receptors CD163, CD204, and CD206, as well as of the co-regulatory receptors TIGIT, CD226, TIM-3, and LAG-3 was significantly more frequent on macrophages in HGSOC than in HDs. CD39 and CD73 were broadly expressed on (mainly M2) macrophages, but without a clear clustering in HGSOC. CD163 mRNA levels were higher in TAMs from patients with residual tumor mass after surgery and associated with a shorter overall survival. In addition, TIGIT expression was associated with a higher tumor grading, indicating a prognostic relevance of M2 infiltration in HGSOC. TIGIT blockade significantly reduced the frequency of M2 macrophages. Moreover, combined blockade of TIGIT and CD47 significantly increased phagocytosis of ovarian cancer cells by TAMs in comparison to a single blockade of CD47. Conclusion Combined blockade of TIGIT and CD47 represents a promising approach to enhance anti-CD47-facilitated phagocytosis.
Collapse
Affiliation(s)
- Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jana Muschhammer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christin Ackermann
- Department of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Hematopathology Hamburg HpH, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Yi Ding
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Minyue Qi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Louisa Hell
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|