1
|
Schifferli A, Nimmerjahn F, Kühne T. Immunomodulation in Primary Immune Thrombocytopenia: A Possible Role of the Fc Fragment of Romiplostim? Front Immunol 2019; 10:1196. [PMID: 31214173 PMCID: PMC6557984 DOI: 10.3389/fimmu.2019.01196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fc fusion proteins and Fc fusion peptides or peptibodies are chimeric molecules composed of an active pharmacological protein or peptide and the Fc fragment of an immunoglobulin. The primary aim of this drug construct is to prolong the half-life of the active component. This molecular architecture is seen in drugs, such as etanercept, romiplostim, and the recombinant factor VIII (efmoroctocog alfa). A considerable number of Fc fusion proteins and peptibodies are currently in pre-clinical and clinical development. The isolated effect of the Fc fragment has been studied intensively during last years, but is still poorly understood in the clinical setting and in relation with the active drug and underlying disease. In this short review, we will propose new hypotheses of possible immunomodulatory functions of the Fc fragment of romiplostim in patients with primary immune thrombocytopenia.
Collapse
Affiliation(s)
- Alexandra Schifferli
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Kühne
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
St. Clair JB, Detanico T, Aviszus K, Kirchenbaum GA, Christie M, Carpenter JF, Wysocki LJ. Immunogenicity of Isogenic IgG in Aggregates and Immune Complexes. PLoS One 2017; 12:e0170556. [PMID: 28114383 PMCID: PMC5256993 DOI: 10.1371/journal.pone.0170556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/07/2017] [Indexed: 01/08/2023] Open
Abstract
A paradox in monoclonal antibody (mAb) therapy is that despite the well-documented tolerogenic properties of deaggregated IgG, most therapeutic IgG mAb induce anti-mAb responses. To analyze CD4 T cell reactions against IgG in various physical states, we developed an adoptive transfer model using CD4+ T cells specific for a Vκ region-derived peptide in the hapten-specific IgG mAb 36–71. We found that heat-aggregated or immune complexes (IC) of mAb 36–71 elicited anti-idiotypic (anti-Id) antibodies, while the deaggregated form was tolerogenic. All 3 forms of mAb 36–71 induced proliferation of cognate CD4+ T cells, but the aggregated and immune complex forms drove more division cycles and induced T follicular helper cells (TFH) development more effectively than did the deaggregated form. These responses occurred despite no adjuvant and no or only trace levels of endotoxin in the preparations. Physical analyses revealed large differences in micron- and nanometer-sized particles between the aggregated and IC forms. These differences may be functionally relevant, as CD4+ T cell proliferation to aggregated, but not IC mAb 36–71, was nearly ablated upon peritoneal injection of B cell-depleting antibody. Our results imply that, in addition to denatured aggregates, immune complexes formed in vivo between therapeutic mAb and their intended targets can be immunogenic.
Collapse
Affiliation(s)
- J. Benjamin St. Clair
- Department of Biomedical Research, National Jewish Health, Denver CO, United States of America
- Medical Scientist Training Program, University of Colorado School of Medicine, Denver, Colorado, United States of America
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Thiago Detanico
- Department of Biomedical Research, National Jewish Health, Denver CO, United States of America
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Katja Aviszus
- Department of Biomedical Research, National Jewish Health, Denver CO, United States of America
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Greg A. Kirchenbaum
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Merry Christie
- Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John F. Carpenter
- Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Lawrence J. Wysocki
- Department of Biomedical Research, National Jewish Health, Denver CO, United States of America
- * E-mail:
| |
Collapse
|
3
|
Prabagar MG, Choi HJ, Park JY, Loh S, Kang YS. Intravenous immunoglobulin-mediated immunosuppression and the development of an IVIG substitute. Clin Exp Med 2013; 14:361-73. [PMID: 23996469 DOI: 10.1007/s10238-013-0255-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023]
Abstract
Immunoglobulins are glycoproteins produced by the cells of the immune system. Their primary function is to protect the body from pathogenic infection. Moreover, a concentrated polyclonal mixture of immunoglobulin G (IgG), the so-called intravenous IgG (IVIG), has been used to treat various chronic and systemic disorders of the immune system. Studies on the effects of IVIG in autoimmune disease models have revealed that IgG Fc fragments confer protection against various autoimmune diseases. The identification of this IgG Fc immunomodulatory component is important for the development of IVIG substitutes. The focus of this review is to introduce one of the Fc regulatory entities and to provide a summary of the current knowledge of the putative general mechanisms underlying IVIG activity in vivo on the basis of these Fc fragments. We also address the recent insights into several approaches for the development of IVIG substitutes.
Collapse
Affiliation(s)
- Miglena G Prabagar
- Department of Biomedical Science and Technology, SMART Institute of Advanced Biomedical Science, Institute of Functional Genomics, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | | | | | | | | |
Collapse
|
4
|
Self-antigen presentation by mouse B cells results in regulatory T-cell induction rather than anergy or clonal deletion. Blood 2011; 118:984-91. [PMID: 21652680 DOI: 10.1182/blood-2011-02-336115] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple mechanisms operate to ensure T-cell tolerance toward self-antigens. Three main processes have been described: clonal deletion, anergy, and deviation to CD4(+) regulatory T cells (Tregs) that suppress autoreactive T cells that have escaped the first 2 mechanisms. Although it is accepted that dendritic cells (DCs) and B cells contribute in maintaining T-cell tolerance to self-antigens, their relative contribution and the processes involved under physiologic conditions remain only partially characterized. In this study, we used different transgenic mouse models to obtain chimeras where a neo self-antigen is expressed by thymic epithelium and/or by DCs or B cells. We found that expression of cognate ligand in the thymus enhances antigen-specific FoxP3(+) cells independently of whether the self-antigen is expressed on thymic epithelium or only on DCs, but not on B cells. On the contrary, self-antigen expression by B cells was very efficient in inducing FoxP3(+) cells in the periphery, whereas self-antigen expression by DC led mainly to deletion and anergy of antigen-specific FoxP3(-) cells. The results presented in this study underline the role of B cells in Treg induction and may have important implications in clinical protocols aimed at the peripheral expansion of Tregs in patients.
Collapse
|
5
|
Berthelot JM, le Goff B, Maugars Y. Thymic Hassall's Corpuscles, Regulatory T-Cells, and Rheumatoid Arthritis. Semin Arthritis Rheum 2010; 39:347-55. [DOI: 10.1016/j.semarthrit.2008.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 07/03/2008] [Accepted: 08/25/2008] [Indexed: 12/26/2022]
|
6
|
Mi W, Wanjie S, Lo ST, Gan Z, Pickl-Herk B, Ober RJ, Ward ES. Targeting the neonatal fc receptor for antigen delivery using engineered fc fragments. THE JOURNAL OF IMMUNOLOGY 2008; 181:7550-61. [PMID: 19017944 DOI: 10.4049/jimmunol.181.11.7550] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of approaches for Ag delivery to the appropriate subcellular compartments of APCs and the optimization of Ag persistence are both of central relevance for the induction of protective immunity or tolerance. The expression of the neonatal Fc receptor, FcRn, in APCs and its localization to the endosomal system suggest that it might serve as a target for Ag delivery using engineered Fc fragment-epitope fusions. The impact of FcRn binding characteristics of an Fc fragment on in vivo persistence allows this property to also be modulated. We have therefore generated recombinant Fc (mouse IgG1-derived) fusions containing the N-terminal epitope of myelin basic protein that is associated with experimental autoimmune encephalomyelitis in H-2(u) mice. The Fc fragments have distinct binding properties for FcRn that result in differences in intracellular trafficking and in vivo half-lives, allowing the impact of these characteristics on CD4(+) T cell responses to be evaluated. To dissect the relative roles of FcRn and the "classical" FcgammaRs in Ag delivery, analogous aglycosylated Fc-MBP fusions have been generated. We show that engineered Fc fragments with increased affinities for FcRn at pH 6.0-7.4 are more effective in delivering Ag to FcRn-expressing APCs in vitro relative to their lower affinity counterparts. However, higher affinity of the FcRn-Fc interaction at near neutral pH results in decreased in vivo persistence. The trade-off between improved FcRn targeting efficiency and lower half-life becomes apparent during analyses of T cell proliferative responses in mice, particularly when Fc-MBP fusions with both FcRn and FcgammaR binding activity are used.
Collapse
Affiliation(s)
- Wentao Mi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
We have identified at least 2 highly promiscuous major histocompatibility complex class II T-cell epitopes in the Fc fragment of IgG that are capable of specifically activating CD4(+)CD25(Hi)FoxP3(+) natural regulatory T cells (nT(Regs)). Coincubation of these regulatory T-cell epitopes or "Tregitopes" and antigens with peripheral blood mononuclear cells led to a suppression of effector cytokine secretion, reduced proliferation of effector T cells, and caused an increase in cell surface markers associated with T(Regs) such as FoxP3. In vivo administration of the murine homologue of the Fc region Tregitope resulted in suppression of immune response to a known immunogen. These data suggest that one mechanism for the immunosuppressive activity of IgG, such as with IVIG, may be related to the activity of regulatory T cells. In this model, regulatory T-cell epitopes in IgG activate a subset of nT(Regs) that tips the resulting immune response toward tolerance rather than immunogenicity.
Collapse
|