1
|
Alsaeed SA, Toss M, Alsaleem M, Aleskandarany M, Joseph C, Kurozumi S, Ball G, Mongan N, Green A, Rakha E. Prognostic significance of heat shock protein 90AA1 (HSP90α) in invasive breast cancer. J Clin Pathol 2021; 75:263-269. [PMID: 33766957 DOI: 10.1136/jclinpath-2020-207106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/26/2020] [Accepted: 01/23/2021] [Indexed: 11/03/2022]
Abstract
AIMS The mechanisms that drive breast cancer (BC) progression and poor outcome are not fully understood. The human heat shock protein 90 alpha family class A member 1 (HSP90α) encoded by the HSP90ΑA1 gene has a vital role in cellular responses to stress and is implicated in the development and progression of many cancers. The current study aims to explore the clinical and prognostic importance of HSP90α in BC. METHODS The Molecular Taxonomy of Breast Cancer International Consortium (n=1980); The Cancer Genome Atlas (n=1097) and the Breast Cancer Gene-Expression Miner (Bc-GenExMiner) BC datasets (n=5056) were used to evaluate HSP90ΑA1 mRNA expression. HSP90α protein expression was further assessed using immunohistochemistry in a large (n=911) well-characterised BC series. The association between mRNA and protein expressions with other clinicopathological parameters and outcome was analysed. RESULTS High expression of HSP90ΑA1 both at the mRNA and protein levels was significantly associated with characteristics of BC poor prognosis, including high grade, lymphovascular invasion, poor Nottingham Prognostic Index and positive expression of p53 and PIK3CA. Outcome analysis revealed that high HSP90α protein expression is an independent predictor of shorter BC-specific survival. CONCLUSION HSP90α can be used as a potential prognostic marker in BC. Further mechanistic studies are warranted to determine the underlying molecular mechanisms mediated by HSP90α in BC.
Collapse
Affiliation(s)
- Sami A Alsaeed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK .,Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Michael Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,Department of Applied Medical Sciences, Onizah Community College, Qassim University, Qassim, Saudi Arabia
| | - Mohammed Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Chitra Joseph
- School of Medicine,The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,Department of Breast Surgery, International University of Health and Welfare, Narita, Japan
| | - Graham Ball
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, Notts, UK
| | - Nigel Mongan
- Faculty of Medicine and Health Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,Department of Pharmacology, Weill Cornell Medicine, New York City, New York, USA
| | - Andrew Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Emad Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK.,Faculty of Medicine, Menoufyia University, Shebin al Kawm, Egypt
| |
Collapse
|
2
|
Kariri YA, Alsaleem M, Joseph C, Alsaeed S, Aljohani A, Shiino S, Mohammed OJ, Toss MS, Green AR, Rakha EA. The prognostic significance of interferon-stimulated gene 15 (ISG15) in invasive breast cancer. Breast Cancer Res Treat 2021; 185:293-305. [PMID: 33073304 PMCID: PMC7867506 DOI: 10.1007/s10549-020-05955-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lymphovascular invasion (LVI) is a prognostic factor in early-stage invasive breast cancer (BC). Through bioinformatics, data analyses of multiple BC cohorts revealed the positive association between interferon-stimulated gene 15 (ISG15) LVI status. Thus, we explored the prognostic significance of ISG15 in BC. METHODS The prognostic significance of ISG15 mRNA was assessed in METABRIC (n = 1980), TCGA (n = 854) and Kaplan-Meier Plotter (n = 3951). ISG15 protein was evaluated using immunohistochemistry (n = 859) in early-stage invasive BC patients with long-term follow-up. The associations between ISG15 expression and clinicopathological features, expression of immune cell markers and patient outcome data were evaluated. RESULTS High mRNA and protein ISG15 expression were associated with LVI, higher histological grade, larger tumour size, hormonal receptor negativity, HER2 positivity, p53 and Ki67. High ISG15 protein expression was associated with HER2-enriched BC subtypes and immune markers (CD8, FOXP3 and CD68). High ISG15 mRNA and ISG15 expressions were associated with poor patient outcome. Cox proportional multivariate analysis revealed that the elevated ISG15 expression was an independent prognostic factor of shorter BC-specific survival. CONCLUSION This study provides evidence for the role of ISG15 in LVI development and BC prognosis. Further functional studies in BC are warranted to evaluate the therapeutic potential of ISG15.
Collapse
Affiliation(s)
- Yousif A Kariri
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
- Department of Laboratory Medical Science, Faculty of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Mansour Alsaleem
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Chitra Joseph
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Sami Alsaeed
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Abrar Aljohani
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Sho Shiino
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Omar J Mohammed
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Michael S Toss
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK.
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, NG5 1PB, UK.
| |
Collapse
|
3
|
Liu XR, Yu JJ, Song GH, Di LJ, Jiang HF, Yan Y, Liang X, Zhang RY, Ran R, Wang J, Bai H, Jia SD, Li HP. Peripheral cytotoxic T lymphocyte predicts first-line progression free survival in HER2-positive advanced breast cancer. Breast 2020; 55:7-15. [PMID: 33296767 PMCID: PMC7723789 DOI: 10.1016/j.breast.2020.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background The role of peripheral blood lymphocyte (pBL) in breast cancer has long been studied. However, the predictive role of pBL in advanced breast cancer (ABC) is poorly understood. Methods A total of 303 patients with ABC were consecutively recruited at our center between January 2015 and September 2019. At baseline, pBL subtypes were detected in all patients with 229 blood samples available for circulating tumor DNA (ctDNA) detection. pBL was analyzed through flow cytometry. ctDNA-based gene mutations were detected using next generation sequencing. The cutoff value of pCTL was estimated by X-tile software. Progression free survival (PFS) was estimated by Kaplan-Meier curve and Cox hazard proportion regression model, with difference detection by log-rank test. Results Median follow-up time of the study was 21.0 months. The median age of diagnosis was 52.0 years. Among the pBL subtypes, only pCTL level was found predictive for PFS in the HER2+ patients whom received anti-HER2 therapy (13.1 vs. 5.6 months, P = 0.001). However, the predictive role of pCTL was not found in HR-positive (P = 0.716) and TNBC (P = 0.202). pCTL high associated with suppressive immune indictors including lower CD4/CD8 ratio (P = 0.004) and high level of Treg cell (P = 0.004). High occurrence of FGFR1 amplification which has been reported as immune suppressor was also found in HER2+ patients with pCTL high (22.2% vs. 4.3%, P = 0.048). Conclusions Higher pCTLs level associated with shorter PFS and FGFR1 mutation in HER2+ ABC patients. High pCTL level predicts shorter first-line PFS in HER2+ patients receiving anti-HER2 based regimens. The predictive role of pCTL level found in HER2+ patients was not applicable in HR+ and TNBC patients. High level of pCTL was associated with immunosuppressive status and FGFR1 mutations in HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Xiao-Ran Liu
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China
| | - Jian-Jun Yu
- Huidu Shanghai Medical Sciences, Wang-Yuan Road No.1698, Feng-Xian District, Shanghai, 201499, China
| | - Guo-Hong Song
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China
| | - Li-Jun Di
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China
| | - Han-Fang Jiang
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China
| | - Ying Yan
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China
| | - Xu Liang
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China
| | - Ru-Yan Zhang
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China
| | - Ran Ran
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China
| | - Jing Wang
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China
| | - Han Bai
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China
| | - Shi-Dong Jia
- Huidu Shanghai Medical Sciences, Wang-Yuan Road No.1698, Feng-Xian District, Shanghai, 201499, China
| | - Hui-Ping Li
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road No.52, Hai-Dian District, Beijing, 100142, China.
| |
Collapse
|
4
|
Chen Y, Chen W, Dai X, Zhang C, Zhang Q, Lu J. Identification of the collagen family as prognostic biomarkers and immune-associated targets in gastric cancer. Int Immunopharmacol 2020; 87:106798. [PMID: 32693357 DOI: 10.1016/j.intimp.2020.106798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Gastric cancer has extremely high morbidity and mortality. Currently, it is lack of effective biomarkers and therapeutic targets for guiding clinical treatment. In this study, we aimed to identify novel biomarkers and therapeutic targets for gastric cancer. METHODS Differentially expressed genes (DEGs) between gastric cancer and normal tissues were obtained from Gene Expression Omnibus (GEO). Core genes were identified by constructing protein-protein interaction network of DEGs. The expression of core genes was verified in Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN and clinical samples. Further, the mutation, DNA methylation, prognostic value, and immune infiltration of core genes were validated by cBioPortal, MethSurv, Kaplan-Meier plotter, and Tumor Immune Estimation Resource (TIMER) databases. Additionally, drug response analysis was performed by Cancer Therapy Response Portal (CTRP). RESULTS A total of seven collagen family members were identified as core genes among upregulated genes. And copy number amplification may be involved in the upregulation of COL1A1 and COL1A2. Importantly, the collagen family was associated with the poor prognosis of patients with metastasis. Among them, COL1A1 had a higher hazard ratio (HR) for overall survival than other members (HR = 2.33). The correlation between DNA methylation levels at CpG sites of collagen family members and the prognosis was verified in gastric cancer. Besides, collagen family expression was positively correlated with macrophages infiltration and the expression of M2 macrophages markers. Further, collagen expression was related to the sensitivity and resistance of gastric cancer cell lines to certain drugs. CONCLUSIONS The collagen family, especially COL1A1, COL1A2, and COL12A1, may act as potential prognostic biomarkers and immune-associated therapeutic targets in gastric cancer.
Collapse
Affiliation(s)
- Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Chengjuan Zhang
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province 450003, PR China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
5
|
Kariri YA, Aleskandarany MA, Joseph C, Kurozumi S, Mohammed OJ, Toss MS, Green AR, Rakha EA. Molecular Complexity of Lymphovascular Invasion: The Role of Cell Migration in Breast Cancer as a Prototype. Pathobiology 2020; 87:218-231. [PMID: 32645698 DOI: 10.1159/000508337] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lymphovascular invasion (LVI) is associated with poor outcome in breast cancer (BC); however, its underlying mechanisms remain ill-defined. LVI in BC develops through complex molecular pathways involving not only the interplay with the surrounding microenvironment along with endothelial cells lining the lymphovascular spaces but also changes in the malignant epithelial cells with the acquisition of more invasive and migration abilities. In this review, we focus on the key features that enable tumour cell detachment from the primary niche, their migration and interaction with the surrounding microenvironment as well as the crosstalk with the vascular endothelial cells, which eventually lead to intravasation of tumour cells and LVI. Intravascular tumour cell survival and migration, their distant site extravasation, stromal invasion and growth are part of the metastatic cascade. Cancer cell migration commences with loss of tumour cells' cohesion initiating the invasion and migration processes which are usually accompanied by the accumulation of specific cellular and molecular changes that enable tumour cells to overcome the blockades of the extracellular matrix, spread into surrounding tissues and interact with stromal cells and immune cells. Thereafter, tumour cells migrate further via interacting with lymphovascular endothelial cells to penetrate the vessel wall leading ultimately to intravasation of cancer cells. Exploring the potential factors influencing cell migration in LVI can help in understanding the underlying mechanisms of LVI to identify targeted therapy in BC.
Collapse
Affiliation(s)
- Yousif A Kariri
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Faculty of Applied Medical Science, Shaqra University, Riyadh, Saudi Arabia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom,
| |
Collapse
|
6
|
Tawfeik AM, Mora A, Osman A, Moneer MM, El-Sheikh N, Elrefaei M. Frequency of CD4+ regulatory T cells, CD8+ T cells, and human papilloma virus infection in Egyptian Women with breast cancer. Int J Immunopathol Pharmacol 2020; 34:2058738420966822. [PMID: 33103515 PMCID: PMC7786412 DOI: 10.1177/2058738420966822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Several subsets of regulatory CD4+ T cells (CD4+ Tregs) have been described in peripheral blood and tumor microenvironment of breast cancer (BC) patients and may play a role in the progression of BC. High-risk human papilloma virus (HR-HPV) has a causal role in cervical, head, and neck tumors but the role of HR-HPV in evoking neoplasia in BC is still unclear. In this study we assessed the prevalence of CD4+CD25+ FOXP3+ regulatory T cells (CD4+Tregs) and CD3+ CD8+ T cells by flow cytometry in peripheral blood from a total of 55 Egyptian women, including 20 treatment-naïve BC, 15 with breast benign lesions (BBL), and 20 healthy volunteers (HV). HR-HPV genotypes type 16, 18, and 31 were investigated in breast tissue from all BC and BBL patients using Real-Time PCR. HR-HPV was detected in 4/20 (20%) and 0/15 (0%) BC and BBL patients respectively. The frequency of CD4+ Tregs was significantly higher in BC compared to BBL and HV, (P < 0.001). In addition, we observed a significantly higher frequency of CD3+ CD8+ T cells in peripheral blood of patients with late stage III BC compared to early stage I and II BC (P = 0.011). However, there was no significant association between the ratio of CD8+ T cell to CD4+ Tregs frequencies and the expression of Estrogen Receptor (ER), Progesterone Receptor (PR), and Human Epidermal Growth Factor Receptor 2 (HER2). These results lead us to postulate that the association between the frequency of CD4+ Tregs and CD8+ T cells in the peripheral blood may be a prognostic or predictive parameter in Egyptian women with BC. In addition, HR-HPV infection may be implicated in the development of some types of BC in Egyptian women.
Collapse
Affiliation(s)
- Amany M Tawfeik
- Molecular Immunology Unit for Infectious Diseases, Department of Microbiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ahmed Mora
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed Osman
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
- Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Cairo, Egypt
| | - Manar M Moneer
- Department of Epidemiology and Statistics, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nabila El-Sheikh
- Molecular Immunology Unit for Infectious Diseases, Department of Microbiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Mohamed Elrefaei
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
7
|
Aljohani AI, Toss MS, Kurozumi S, Joseph C, Aleskandarany MA, Miligy IM, Ansari RE, Mongan NP, Ellis IO, Green AR, Rakha EA. The prognostic significance of wild-type isocitrate dehydrogenase 2 (IDH2) in breast cancer. Breast Cancer Res Treat 2019; 179:79-90. [PMID: 31599393 PMCID: PMC6985218 DOI: 10.1007/s10549-019-05459-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lymphovascular invasion (LVI) is a prerequisite step in breast cancer (BC) metastasis. We have previously identified wild-type isocitrate dehydrogenase 2 (IDH2) as a key putative driver of LVI. Thus, we explored the prognostic significance of IDH2 at transcriptome and protein expression levels in pre-invasive and invasive disease. METHODS Utlising tissue microarrays from a large well annotated BC cohort including ductal carcinoma in situ and invasive breast cancer (IBC), IDH2 was assessed at the transcriptomic and proteomic level. The associations between clinicopathological factors including LVI status, prognosis and the expression of IDH2 were evaluated. RESULTS In pure DCIS and IBC, high IDH2 protein expression was associated with features of aggressiveness including high nuclear grade, larger size, comedo necrosis and hormonal receptor negativity and LVI, higher grade, larger tumour size, high NPI, HER2 positivity, and hormonal receptor negativity, respectively. High expression of IDH2 either in mRNA or in protein levels was associated with poor patient's outcome in both DCIS and IBC. Multivariate analysis revealed that IDH2 protein expression was an independent risk factor for shorter BC specific-survival. CONCLUSION Further functional studies to decipher the role of IDH2 and its mechanism of action as a driver of BC progression and LVI are warranted.
Collapse
Affiliation(s)
- Abrar I Aljohani
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Islam M Miligy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Histopathology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Rokaya El Ansari
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medicine, New York, 10065, USA.,Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK. .,Histopathology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt. .,Department of Histopathology, Nottingham University Hospital NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
8
|
Kumar H, Bot A. In this issue: Role of immune cells and molecules in rheumatoid arthritis pathogenesis and cancer immunotherapy. Int Rev Immunol 2019; 37:127-128. [PMID: 29733768 DOI: 10.1080/08830185.2018.1469353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Himanshu Kumar
- a International Reviews of Immunology, Associate Professor, Laboratory of Immunology and Infectious Disease Biology , Indian Institute of Science Education and Research (IISER) , Bhopal , India
| | - Adrian Bot
- b International Reviews of Immunology and Vice President, Translational Sciences , Kite Pharma Inc. , Santa Monica , CA , USA
| |
Collapse
|
9
|
Sonbul SN, Aleskandarany MA, Kurozumi S, Joseph C, Toss MS, Diez-Rodriguez M, Nolan CC, Mukherjee A, Martin S, Caldas C, Ellis IO, Green AR, Rakha EA. Saccharomyces cerevisiae-like 1 (SEC14L1) is a prognostic factor in breast cancer associated with lymphovascular invasion. Mod Pathol 2018; 31:1675-1682. [PMID: 29955149 DOI: 10.1038/s41379-018-0092-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Lymphovascular invasion is strongly related to breast cancer metastasis. However, the underlying mechanisms of lymphovascular invasion and its driver molecules in breast cancer remain to be defined. In this study, we explore differential expression of genes in large molecularly characterized and clinically annotated datasets of invasive breast cancer patients (n = 8056) coupled with histological review and strict definition for lymphovascular invasion status. The METABRIC series was used to identify genes associated with lymphovascular invasion, as defined using hematoxylin and eosin staining supplemented by immunohistochemistry, at the genomic/transcriptomic levels. Saccharomyces cerevisiae-like 1 (SEC14L1) was identified as one of the most significant genes associated with lymphovascular invasion. The prognostic significance of SEC14L1 gene copy number and mRNA expression was further investigated in the METABRIC series and externally validated using the Breast Cancer Gene-Expression Miner v4.0. Protein expression of SEC14L1 was also assessed using immunohistochemistry in series of early stage breast cancer using tissue microarrays. SEC14L1 gene copy number gain was significantly associated with high histological grade and poor outcome. SEC14L1 mRNA expression showed positive association with higher grade, lymph node metastasis, and poor outcome. SEC14L1 protein overexpression was significantly associated with lymphovascular invasion (p < 0.0001), higher grade (p = 0.011), HER2 positivity (p = 0.036), and shorter survival (p = 0.00075). Our findings specify SEC14L1 as an independent prognostic factor in breast cancer. Its association, at both transcriptome and protein expression levels, with lymphovascular invasion and outcome could imply an important role in tumor progression. A further mechanistic insight into its molecular roles including potential therapeutic utility is warranted.
Collapse
Affiliation(s)
- Sultan N Sonbul
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
- Faculty of Sciences, Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A Aleskandarany
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
- Faculty of Medicine, Menofia University, Shibin Al Kawm, Egypt
| | - Sasagu Kurozumi
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Chitra Joseph
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Michael S Toss
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Maria Diez-Rodriguez
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Christopher C Nolan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Abhik Mukherjee
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Stewart Martin
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Carlos Caldas
- Addenbrooke's Hospital, Cambridge Breast Unit, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham City Hospital, Nottingham, UK.
- Faculty of Medicine, Menofia University, Shibin Al Kawm, Egypt.
| |
Collapse
|
10
|
Zhang F, Stephan SB, Ene CI, Smith TT, Holland EC, Stephan MT. Nanoparticles That Reshape the Tumor Milieu Create a Therapeutic Window for Effective T-cell Therapy in Solid Malignancies. Cancer Res 2018; 78:3718-3730. [PMID: 29760047 DOI: 10.1158/0008-5472.can-18-0306] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022]
Abstract
A major obstacle to the success rate of chimeric antigen receptor (CAR-) T-cell therapy against solid tumors is the microenvironment antagonistic to T cells that solid tumors create. Conventional checkpoint blockade can silence lymphocyte antisurvival pathways activated by tumors, but because they are systemic, these treatments disrupt immune homeostasis and induce autoimmune side effects. Thus, new technologies are required to remodel the tumor milieu without causing systemic toxicities. Here, we demonstrate that targeted nanocarriers that deliver a combination of immune-modulatory agents can remove protumor cell populations and simultaneously stimulate antitumor effector cells. We administered repeated infusions of lipid nanoparticles coated with the tumor-targeting peptide iRGD and loaded with a combination of a PI3K inhibitor to inhibit immune-suppressive tumor cells and an α-GalCer agonist of therapeutic T cells to synergistically sway the tumor microenvironment of solid tumors from suppressive to stimulatory. This treatment created a therapeutic window of 2 weeks, enabling tumor-specific CAR-T cells to home to the lesion, undergo robust expansion, and trigger tumor regression. CAR-T cells administered outside this therapeutic window had no curative effect. The lipid nanoparticles we used are easy to manufacture in substantial amounts, and we demonstrate that repeated infusions of them are safe. Our technology may therefore provide a practical and low-cost strategy to potentiate many cancer immunotherapies used to treat solid tumors, including T-cell therapy, vaccines, and BITE platforms.Significance: A new nanotechnology approach can promote T-cell therapy for solid tumors. Cancer Res; 78(13); 3718-30. ©2018 AACR.
Collapse
Affiliation(s)
- Fan Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sirkka B Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chibawanye I Ene
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Tyrel T Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Eric C Holland
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| | - Matthias T Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington
| |
Collapse
|