1
|
Coffey NJ, Simon MC. Metabolic alterations in hereditary and sporadic renal cell carcinoma. Nat Rev Nephrol 2024; 20:233-250. [PMID: 38253811 PMCID: PMC11165401 DOI: 10.1038/s41581-023-00800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Kidney cancer is the seventh leading cause of cancer in the world, and its incidence is on the rise. Renal cell carcinoma (RCC) is the most common form and is a heterogeneous disease comprising three major subtypes that vary in their histology, clinical course and driver mutations. These subtypes include clear cell RCC, papillary RCC and chromophobe RCC. Molecular analyses of hereditary and sporadic forms of RCC have revealed that this complex and deadly disease is characterized by metabolic pathway alterations in cancer cells that lead to deregulated oxygen and nutrient sensing, as well as impaired tricarboxylic acid cycle activity. These metabolic changes facilitate tumour growth and survival. Specifically, studies of the metabolic features of RCC have led to the discovery of oncometabolites - fumarate and succinate - that can promote tumorigenesis, moonlighting functions of enzymes, and substrate auxotrophy owing to the disruption of pathways that enable the production of arginine and cholesterol. These metabolic alterations within RCC can be exploited to identify new therapeutic targets and interventions, in combination with novel approaches that minimize the systemic toxicity of metabolic inhibitors and reduce the risk of drug resistance owing to metabolic plasticity.
Collapse
Affiliation(s)
- Nathan J Coffey
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Ye N, Wang Y, Jiang P, Jiang H, Ding W, Zhang Z, Xi C. Hypoxia-induced the upregulation of NDUFA4L2 promoted colon adenocarcinoma progression through ROS-mediated PI3K/AKT pathway. Cytotechnology 2023; 75:461-472. [PMID: 37841958 PMCID: PMC10575837 DOI: 10.1007/s10616-023-00590-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023] Open
Abstract
The NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) gene has been reported to be upregulated in colorectal cancer (CRC) and is associated with worse prognosis. However, the specific function and underlying mechanism of NDUFA4L2 in colon adenocarcinoma (COAD) under hypoxia has never been investigated. Our study discovered that hypoxia promoted the viability, metastasis, and epithelial-mesenchymal transition (EMT) of COAD cells. Besides, hypoxia-induced HIF-1α upregulated the expression of NDUFA4L2 which served as an oncogene and an independent diagnostic and prognostic marker in COAD. Under hypoxic environment, NDUFA4L2 mediated the viability, metastasis, and epithelial-EMT of COAD cells. Additionally, the ROS-dependent PI3K/Akt signaling was activated by NDUFA4L2 in COAD in hypoxia and NDUFA4L2 facilitated the malignant behaviors of hypoxia-treated COAD cells by elevating ROS production. Collectively, abundant NDUFA4L2 expression induced by HIF-1α under hypoxia promoted the development of COAD through activation of the PI3K/AKT signaling in a ROS-dependent manner, indicating NDUFA4L2 as a promising target in COAD diagnosis and treatment.
Collapse
Affiliation(s)
- Nianyuan Ye
- Department of Oncology, Wujin People Hospital Affiliated with Jiangsu University, and Wujin Clinical College of Xuzhou Medical University, No.2 Yongning North Road, Tianning District, Changzhou, 213000 Jiangsu China
| | - Yibo Wang
- Department of Oncology, Wujin People Hospital Affiliated with Jiangsu University, and Wujin Clinical College of Xuzhou Medical University, No.2 Yongning North Road, Tianning District, Changzhou, 213000 Jiangsu China
| | - Peng Jiang
- Department of Oncology, Wujin People Hospital Affiliated with Jiangsu University, and Wujin Clinical College of Xuzhou Medical University, No.2 Yongning North Road, Tianning District, Changzhou, 213000 Jiangsu China
| | - Huaji Jiang
- Department of Oncology, Wujin People Hospital Affiliated with Jiangsu University, and Wujin Clinical College of Xuzhou Medical University, No.2 Yongning North Road, Tianning District, Changzhou, 213000 Jiangsu China
| | - Wei Ding
- Department of Oncology, Wujin People Hospital Affiliated with Jiangsu University, and Wujin Clinical College of Xuzhou Medical University, No.2 Yongning North Road, Tianning District, Changzhou, 213000 Jiangsu China
| | - Zheng Zhang
- Department of Oncology, Wujin People Hospital Affiliated with Jiangsu University, and Wujin Clinical College of Xuzhou Medical University, No.2 Yongning North Road, Tianning District, Changzhou, 213000 Jiangsu China
| | - Cheng Xi
- Department of Oncology, Wujin People Hospital Affiliated with Jiangsu University, and Wujin Clinical College of Xuzhou Medical University, No.2 Yongning North Road, Tianning District, Changzhou, 213000 Jiangsu China
| |
Collapse
|
3
|
Apanovich N, Matveev A, Ivanova N, Burdennyy A, Apanovich P, Pronina I, Filippova E, Kazubskaya T, Loginov V, Braga E, Alimov A. Prediction of Distant Metastases in Patients with Kidney Cancer Based on Gene Expression and Methylation Analysis. Diagnostics (Basel) 2023; 13:2289. [PMID: 37443682 DOI: 10.3390/diagnostics13132289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and aggressive histological type of cancer in this location. Distant metastases are present in approximately 30% of patients at the time of first examination. Therefore, the ability to predict the occurrence of metastases in patients at early stages of the disease is an urgent task aimed at personalized treatment. Samples of tumor and paired histologically normal kidney tissue from patients with metastatic and non-metastatic ccRCC were studied. Gene expression was analyzed using real-time PCR. The level of gene methylation was evaluated using bisulfite conversion followed by quantitative methylation-specific PCR. Two groups of genes were analyzed in this study. The first group includes genes whose expression is significantly reduced during metastasis: CA9, NDUFA4L2, EGLN3, and BHLHE41 (p < 0.001, ROC analysis). The second group includes microRNA genes: MIR125B-1, MIR137, MIR375, MIR193A, and MIR34B/C, whose increased methylation levels are associated with the development of distant metastases (p = 0.002 to <0.001, ROC analysis). Based on the data obtained, a combined panel of genes was formed to identify patients whose tumors have a high metastatic potential. The panel can estimate the probability of metastasis with an accuracy of up to 92%.
Collapse
Affiliation(s)
- Natalya Apanovich
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia
| | - Alexey Matveev
- Federal State Budgetary Institution (N.N. Blokhin National Medical Research Center of Oncology) of the Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Natalia Ivanova
- Institute of General Pathology and Pathophysiology, Baltijskaya St. 8, Moscow 125315, Russia
| | - Alexey Burdennyy
- Institute of General Pathology and Pathophysiology, Baltijskaya St. 8, Moscow 125315, Russia
| | - Pavel Apanovich
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia
| | - Irina Pronina
- Institute of General Pathology and Pathophysiology, Baltijskaya St. 8, Moscow 125315, Russia
| | - Elena Filippova
- Institute of General Pathology and Pathophysiology, Baltijskaya St. 8, Moscow 125315, Russia
| | - Tatiana Kazubskaya
- Federal State Budgetary Institution (N.N. Blokhin National Medical Research Center of Oncology) of the Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Vitaly Loginov
- Institute of General Pathology and Pathophysiology, Baltijskaya St. 8, Moscow 125315, Russia
| | - Eleonora Braga
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia
- Institute of General Pathology and Pathophysiology, Baltijskaya St. 8, Moscow 125315, Russia
| | - Andrei Alimov
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia
| |
Collapse
|
4
|
Laursen KB, Chen Q, Khani F, Attarwala N, Gross SS, Dow L, Nanus DM, Gudas LJ. Mitochondrial Ndufa4l2 Enhances Deposition of Lipids and Expression of Ca9 in the TRACK Model of Early Clear Cell Renal Cell Carcinoma. Front Oncol 2022; 11:783856. [PMID: 34970493 PMCID: PMC8712948 DOI: 10.3389/fonc.2021.783856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction and aberrant glycolysis are hallmarks of human clear cell renal cell carcinoma (ccRCC). Whereas glycolysis is thoroughly studied, little is known about the mitochondrial contribution to the pathology of ccRCC. Mitochondrial Ndufa4l2 is predictive of poor survival of ccRCC patients, and in kidney cancer cell lines the protein supports proliferation and colony formation. Its role in ccRCC, however, remains enigmatic. We utilized our established ccRCC model, termed Transgenic Cancer of the Kidney (TRACK), to generate a novel genetically engineered mouse model in which dox-regulated expression of an shRNA decreases Ndufa4l2 levels specifically in the renal proximal tubules (PT). This targeted knockdown of Ndufa4l2 reduced the accumulation of neutral renal lipid and was associated with decreased levels of the ccRCC markers carbonic anhydrase 9 (CA9) and Enolase 1 (ENO1). These findings suggest a link between mitochondrial dysregulation (i.e. high levels of Ndufa4l2), lipid accumulation, and the expression of ccRCC markers ENO1 and CA9, and demonstrate that lipid accumulation and ccRCC development can potentially be attenuated by inhibiting Ndufa4l2.
Collapse
Affiliation(s)
- Kristian B Laursen
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Qiuying Chen
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Department of Urology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Nabeel Attarwala
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Steve S Gross
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Lukas Dow
- Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Department of Biochemistry, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Graduate School of Medical Sciences, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - David M Nanus
- Department of Urology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Lorraine J Gudas
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Department of Urology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Apanovich N, Apanovich P, Mansorunov D, Kuzevanova A, Matveev V, Karpukhin A. The Choice of Candidates in Survival Markers Based on Coordinated Gene Expression in Renal Cancer. Front Oncol 2021; 11:615787. [PMID: 34046336 PMCID: PMC8144703 DOI: 10.3389/fonc.2021.615787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
We aimed to identify and investigate genes that are essential for the development of clear cell renal cell carcinoma (ccRCC) and sought to shed light on the mechanisms of its progression and create prognostic markers for the disease. We used real-time PCR to study the expression of 20 genes that were preliminarily selected based on their differential expression in ccRCC, in 68 paired tumor/normal samples. Upon ccRCC progression, seven genes that showed an initial increase in expression showed decreased expression. The genes whose expression levels did not significantly change during progression were associated mainly with metabolic and inflammatory processes. The first group included CA9, NDUFA4L2, EGLN3, BHLHE41, VWF, IGFBP3, and ANGPTL4, whose expression levels were coordinately decreased during tumor progression. This expression coordination and gene function is related to the needs of tumor development at different stages. Specifically, the high correlation coefficient of EGLN3 and NDUFA4L2 expression may indicate the importance of the coordinated regulation of glycolysis and mitochondrial metabolism. A panel of CA9, EGLN3, BHLHE41, and VWF enabled the prediction of survival for more than 3.5 years in patients with ccRCC, with a probability close to 90%. Therefore, a coordinated change in the expression of a gene group during ccRCC progression was detected, and a new panel of markers for individual survival prognosis was identified.
Collapse
Affiliation(s)
- Natalya Apanovich
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Pavel Apanovich
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Danzan Mansorunov
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Anna Kuzevanova
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Vsevolod Matveev
- Department of Oncourology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Karpukhin
- Laboratory of Molecular Genetics of Complex Inherited Diseases, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
6
|
Giulietti M, Cecati M, Sabanovic B, Scirè A, Cimadamore A, Santoni M, Montironi R, Piva F. The Role of Artificial Intelligence in the Diagnosis and Prognosis of Renal Cell Tumors. Diagnostics (Basel) 2021; 11:206. [PMID: 33573278 PMCID: PMC7912267 DOI: 10.3390/diagnostics11020206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
The increasing availability of molecular data provided by next-generation sequencing (NGS) techniques is allowing improvement in the possibilities of diagnosis and prognosis in renal cancer. Reliable and accurate predictors based on selected gene panels are urgently needed for better stratification of renal cell carcinoma (RCC) patients in order to define a personalized treatment plan. Artificial intelligence (AI) algorithms are currently in development for this purpose. Here, we reviewed studies that developed predictors based on AI algorithms for diagnosis and prognosis in renal cancer and we compared them with non-AI-based predictors. Comparing study results, it emerges that the AI prediction performance is good and slightly better than non-AI-based ones. However, there have been only minor improvements in AI predictors in terms of accuracy and the area under the receiver operating curve (AUC) over the last decade and the number of genes used had little influence on these indices. Furthermore, we highlight that different studies having the same goal obtain similar performance despite the fact they use different discriminating genes. This is surprising because genes related to the diagnosis or prognosis are expected to be tumor-specific and independent of selection methods and algorithms. The performance of these predictors will be better with the improvement in the learning methods, as the number of cases increases and by using different types of input data (e.g., non-coding RNAs, proteomic and metabolic). This will allow for more precise identification, classification and staging of cancerous lesions which will be less affected by interpathologist variability.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| | - Monia Cecati
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| | - Berina Sabanovic
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of Marche, United Hospitals, 60126 Ancona, Italy; (A.C.); (R.M.)
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62012 Macerata, Italy;
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of Marche, United Hospitals, 60126 Ancona, Italy; (A.C.); (R.M.)
| | - Francesco Piva
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (M.G.); (M.C.); (B.S.)
| |
Collapse
|
7
|
Liu Y, Nie X, Zhu J, Wang T, Li Y, Wang Q, Sun Z. NDUFA4L2 in smooth muscle promotes vascular remodeling in hypoxic pulmonary arterial hypertension. J Cell Mol Med 2021; 25:1221-1237. [PMID: 33340241 PMCID: PMC7812284 DOI: 10.1111/jcmm.16193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance and obliterative pulmonary vascular remodelling (PVR). The imbalance between the proliferation and apoptosis of pulmonary artery smooth muscle cells (PASMCs) is an important cause of PVR leading to PAH. Mitochondria play a key role in the production of hypoxia-induced pulmonary hypertension (HPH). However, there are still many issues worth studying in depth. In this study, we demonstrated that NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 like 2 (NDUFA4L2) was a proliferation factor and increased in vivo and in vitro through various molecular biology experiments. HIF-1α was an upstream target of NDUFA4L2. The plasma levels of 4-hydroxynonene (4-HNE) were increased both in PAH patients and hypoxic PAH model rats. Knockdown of NDUFA4L2 decreased the levels of malondialdehyde (MDA) and 4-HNE in human PASMCs in hypoxia. Elevated MDA and 4-HNE levels might be associated with excessive ROS generation and increased expression of 5-lipoxygenase (5-LO) in hypoxia, but this effect was blocked by siNDUFA4L2. Further research found that p38-5-LO was a downstream signalling pathway of PASMCs proliferation induced by NDUFA4L2. Up-regulated NDUFA4L2 plays a critical role in the development of HPH, which mediates ROS production and proliferation of PASMCs, suggesting NDUFA4L2 as a potential new therapeutic target for PAH.
Collapse
MESH Headings
- Aldehydes/metabolism
- Animals
- Arachidonate 5-Lipoxygenase/metabolism
- Cell Hypoxia
- Cell Proliferation
- Disease Models, Animal
- Electron Transport Complex I/genetics
- Electron Transport Complex I/metabolism
- Endothelial Cells/metabolism
- Gene Expression Regulation
- Gene Silencing
- Humans
- Hypoxia/complications
- Hypoxia/physiopathology
- Male
- Malondialdehyde/metabolism
- Models, Biological
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidation-Reduction
- Oxygen Consumption
- Pulmonary Arterial Hypertension/complications
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Artery/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Vascular Remodeling/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiaowei Nie
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jinquan Zhu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Tianyan Wang
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yanli Li
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, China
| | - Zengxian Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
8
|
Wang H, Chong T, Li BY, Chen XS, Zhen WB. Evaluating the clinical significance of SHMT2 and its co-expressed gene in human kidney cancer. Biol Res 2020; 53:46. [PMID: 33066813 PMCID: PMC7566128 DOI: 10.1186/s40659-020-00314-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background Kidney cancer is one of the most common cancers in the world. It is necessary to clarify its underlying mechanism and find its prognostic biomarkers. Current studies showed that SHMT2 may be participated in several kinds of cancer. Methods Our studies investigated the expression of SHMT2 in kidney cancer by Oncomine, Human Protein Atlas database and ULCAN database. Meanwhile, we found its co-expression gene by cBioPortal online tool and validated their relationship in A498 and ACHN cells by cell transfection, western blot and qRT-PCR. Besides these, we also explored their prognostic values via the Kaplan–Meier plotter database in different types of kidney cancer patients. Results SHMT2 was found to be increased in 7 kidney cancer datasets, compared to normal renal tissues. For the cancer stages, ages and races, there existed significant difference in the expression of SHMT2 among different groups by mining of the UALCAN database. High SHMT2 expression is associated with poor overall survival in patients with kidney cancer. Among all co-expressed genes, NDUFA4L2 and SHMT2 had a high co-expression efficient. SHMT2 overexpression led to the increased expression of NDUFA4L2 at both mRNA and protein levels. Like SHMT2, overexpressed NDUFA4L2 also was associated with worse overall survival in patients with kidney cancer. Conclusion Based on above results, overexpressed SHMT2 and its co-expressed gene NDUFA4L2 were all correlated with the prognosis in kidney cancer. The present study might be benefit for better understanding the clinical significance of SHMT2 and provided a potential therapeutic target for kidney cancer in future.
Collapse
Affiliation(s)
- Huan Wang
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China.,Urology Department, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China.,Female Urologic Institution, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China
| | - Tie Chong
- Department of Urology, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China.
| | - Bo-Yong Li
- Urology Department, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China.,Female Urologic Institution, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China
| | - Xiao-San Chen
- Urology Department, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China.,Female Urologic Institution, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China
| | - Wen-Bo Zhen
- Urology Department, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China.,Female Urologic Institution, The First Hospital of Yueyang City, Yueyang City, Hunan Province, 414000, China
| |
Collapse
|
9
|
Apanovich N, Peters M, Apanovich P, Mansorunov D, Markova A, Matveev V, Karpukhin A. The Genes-Candidates for Prognostic Markers of Metastasis by Expression Level in Clear Cell Renal Cell Cancer. Diagnostics (Basel) 2020; 10:diagnostics10010030. [PMID: 31936274 PMCID: PMC7168144 DOI: 10.3390/diagnostics10010030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
The molecular prognostic markers of metastasis are important for personalized approaches to clear cell renal cell carcinoma (ccRCC) treatment but markers for practical use are still missing. To address this gap we studied the expression of ten genes—CA9, NDUFA4L2, VWF, IGFBP3, BHLHE41, EGLN3, SAA1, CSF1R, C1QA, and FN1—through RT-PCR, in 56 ccRCC patients without metastases and with metastases. All of these, excluding CSF1R, showed differential and increased (besides SAA1) expression in non-metastasis tumors. The gene expression levels in metastasis tumors were decreased, besides CSF1R, FN1 (not changed), and SAA1 (increased). There were significant associations of the differentially expressed genes with ccRCC metastasis by ROC analysis and the Fisher exact test. The association of the NDUFA4L2, VWF, EGLN3, SAA1, and C1QA expression with ccRCC metastasis is shown for the first time. The CA9, NDUFA4L2, BHLHE4, and EGLN3 were distinguished as the strongest candidates for ccRCC metastasis biomarkers. We used an approach that presupposed that the metastasis marker was the expression levels of any three genes from the selected panel and received sensitivity (88%) and specificity (73%) levels with a relative risk of RR > 3. In conclusion, a panel of selected genes—the candidates in biomarkers of ccRCC metastasis—was created for the first time. The results might shed some light on the ccRCC metastasis processes.
Collapse
Affiliation(s)
- Natalya Apanovich
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
| | - Maria Peters
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (M.P.); (A.M.); (V.M.)
| | - Pavel Apanovich
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
| | - Danzan Mansorunov
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
| | - Anna Markova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (M.P.); (A.M.); (V.M.)
| | - Vsevolod Matveev
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (M.P.); (A.M.); (V.M.)
| | - Alexander Karpukhin
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
- Correspondence: ; Tel.: +7-499-324-12-39
| |
Collapse
|
10
|
Wang C, Gao F, Giannakis GB, D'Urso G, Cai X. Efficient proximal gradient algorithm for inference of differential gene networks. BMC Bioinformatics 2019; 20:224. [PMID: 31046666 PMCID: PMC6498668 DOI: 10.1186/s12859-019-2749-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Gene networks in living cells can change depending on various conditions such as caused by different environments, tissue types, disease states, and development stages. Identifying the differential changes in gene networks is very important to understand molecular basis of various biological process. While existing algorithms can be used to infer two gene networks separately from gene expression data under two different conditions, and then to identify network changes, such an approach does not exploit the similarity between two gene networks, and it is thus suboptimal. A desirable approach would be clearly to infer two gene networks jointly, which can yield improved estimates of network changes. Results In this paper, we developed a proximal gradient algorithm for differential network (ProGAdNet) inference, that jointly infers two gene networks under different conditions and then identifies changes in the network structure. Computer simulations demonstrated that our ProGAdNet outperformed existing algorithms in terms of inference accuracy, and was much faster than a similar approach for joint inference of gene networks. Gene expression data of breast tumors and normal tissues in the TCGA database were analyzed with our ProGAdNet, and revealed that 268 genes were involved in the changed network edges. Gene set enrichment analysis identified a significant number of gene sets related to breast cancer or other types of cancer that are enriched in this set of 268 genes. Network analysis of the kidney cancer data in the TCGA database with ProGAdNet also identified a set of genes involved in network changes, and the majority of the top genes identified have been reported in the literature to be implicated in kidney cancer. These results corroborated that the gene sets identified by ProGAdNet were very informative about the cancer disease status. A software package implementing the ProGAdNet, computer simulations, and real data analysis is available as Additional file 1. Conclusion With its superior performance over existing algorithms, ProGAdNet provides a valuable tool for finding changes in gene networks, which may aid the discovery of gene-gene interactions changed under different conditions. Electronic supplementary material The online version of this article (10.1186/s12859-019-2749-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Wang
- Department of Electrical and Computer Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, 33146, FL, USA
| | - Feng Gao
- Department of Electrical and Computer Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, 33146, FL, USA
| | - Georgios B Giannakis
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, 55455, MN, USA
| | - Gennaro D'Urso
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, 33136, FL, USA
| | - Xiaodong Cai
- Department of Electrical and Computer Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, 33146, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, 33136, FL, USA.
| |
Collapse
|
11
|
Li L, Li Y, Huang Y, Ouyang Y, Zhu Y, Wang Y, Guo X, Yuan Y, Gong K. Long non-coding RNA MIF-AS1 promotes gastric cancer cell proliferation and reduces apoptosis to upregulate NDUFA4. Cancer Sci 2018; 109:3714-3725. [PMID: 30238562 PMCID: PMC6272088 DOI: 10.1111/cas.13801] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/02/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022] Open
Abstract
Long non‐coding RNA MIF‐AS1 (lncMIF‐AS1) has been found to be upregulated in the tumor tissues of gastric cancer; however, its importance for the progression of gastric cancer remains unknown. Thus, the present study was designed to determine the role of the lncMIF‐AS1‐based signal transduction pathway in mediating the proliferation and apoptosis of gastric cancer cells. Differentially expressed lncRNAs and mRNAs were screened out using microarray analysis, based on the published data (GSE63288), and validated using quantitative RT‐PCR. Target relationships between lncRNA‐micro RNA (miRNA) and miRNA‐mRNA were predicted by bioinformatics analysis and verified by dual‐luciferase reporter assay. Protein expression of NDUFA4, COX6C and COX5B was detected by western blot. Cell proliferation, cell cycle and apoptosis were determined using colony formation assay and flow cytometry analysis. Oxidative phosphorylation in gastric cancer cells was assessed by levels of oxygen consumption and ATP synthase activity. Expression of lncMIF‐AS1 and NDUFA4 were upregulated in gastric cancer tissues and cells as compared with non‐cancerous gastric tissues and cells (P < .05). MiR‐212‐5p was identified as the most important miRNA linker between lncMIF‐AS1 and NDUFA4, which was negatively regulated by lncMIF‐AS1 and its depletion is the main cause of NDUFA4 overexpression (P < .01). The upregulated expression of NDUFA4 then greatly promoted the proliferation and decreased the apoptosis of gastric cancer cells through activation of the oxidative phosphorylation pathway. Taken together, the present study implies that inhibition of lncMIF‐AS1/miR‐212‐5p/NDUFA4 signal transduction may provide a promising therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Linhai Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuejin Li
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yingguang Huang
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yiming Ouyang
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Zhu
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongzhi Wang
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaodong Guo
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Yuan
- Department of Emergency Internal Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Kunmei Gong
- Department of General Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
12
|
Wang L, Peng Z, Wang K, Qi Y, Yang Y, Zhang Y, An X, Luo S, Zheng J. NDUFA4L2 is associated with clear cell renal cell carcinoma malignancy and is regulated by ELK1. PeerJ 2017; 5:e4065. [PMID: 29158991 PMCID: PMC5695248 DOI: 10.7717/peerj.4065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/29/2017] [Indexed: 01/04/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common and lethal cancer of the adult kidney. However, its pathogenesis has not been fully understood till now, which hinders the therapeutic development of ccRCC. NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) was found to be upregulated and play an important role in ccRCC. We aimed to further investigate the underlying mechanisms by which NDUFA4L2 exerted function and its expression level was upregulated. Methods The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data were mined to verify the change of NDUFA4L2 expression level in ccRCC tissues. The correlation between expression level of NDUFA4L2 and cell proliferation/apoptosis was explored by Gene Set Enrichment Analysis (GSEA). Protein-protein interaction (PPI) network of NDUFA4L2 was constructed. Biological process and involved pathways of NDUFA4L2 were analyzed by gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The transcription factors (TFs) which can induce the expression of NDUFA4L2 were explored in clinical samples by correlation analysis and its regulation on the expression of NDUFA4L2 was verified by knockdown experiment. Results NDUFA4L2 was verified to be overexpressed in ccRCC tissues and its expression level was increased accordingly as the American Joint Committee on Cancer (AJCC) stage progressed. A high NDUFA4L2 level predicted the poor prognosis of ccRCC patients and correlated with enhanced cell proliferation and anti-apoptosis. NDUFA4L2 may interact with 14 tumor-related proteins, participate in growth and death processes and be involved in ccRCC-related pathways, such as insulin-like growth factor 1 (IGF-1), mammalian target of Rapamycin (mTOR) and phosphoinositide 3 kinase serine/threonine protein kinase (PI3K/AKT). ETS domain-containing protein ELK1 level positively correlated with the level of NDUFA4L2 in ccRCC tissues and ELK1 could regulate the expression of NDUFA4L2 in ccRCC cells. Discussion NDUFA4L2 upregulation was associated with ccRCC malignancy. NDUFA4L2 expression was regulated by ELK1 in ccRCC cells. Our study provided potential mechanisms by which NDUFA4L2 affected ccRCC occurrence and progression.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Peng
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Kaizhen Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Yijun Qi
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Ying Yang
- Core Facilities Center, Capital Medical University, Beijing, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Xinyuan An
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Shudong Luo
- Key Laboratory of Biology of Insect-Pollinator, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junfang Zheng
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Tumor Invasion and Metastasis, Cancer Institute of Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Kadenbach B. Regulation of Mammalian 13-Subunit Cytochrome c Oxidase and Binding of other Proteins: Role of NDUFA4. Trends Endocrinol Metab 2017; 28:761-770. [PMID: 28988874 DOI: 10.1016/j.tem.2017.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
Abstract
Cytochrome c oxidase (CcO) is the final oxygen accepting enzyme complex (complex IV) of the mitochondrial respiratory chain. In contrast to the other complexes (I, II, and III), CcO is highly regulated via isoforms for six of its ten nuclear-coded subunits, which are differentially expressed in species, tissues, developmental stages, and cellular oxygen concentrations. Recent publications have claimed that NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 (NDUFA4), originally identified as subunit of complex I, represents a 14th subunit of CcO. Results on CcO composition in tissues from adult animals and the review of data from recent literature strongly suggest that NDUFA4 is not a 14th subunit of CcO but may represent an assembly factor for CcO or supercomplexes (respirasomes) in mitochondria of growing cells and cancer tissues.
Collapse
|