1
|
Li X, Zhou W, Chen J, Zhou L, Li Y, Wu X, Peng X. Circ_001653 alleviates sepsis associated-acute kidney injury by recruiting BUD13 to regulate KEAP1/NRF2/HO-1 signaling pathway. J Inflamm (Lond) 2024; 21:37. [PMID: 39289683 PMCID: PMC11406777 DOI: 10.1186/s12950-024-00409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The kidney is exceptionally vulnerable during sepsis, often resulting in sepsis-associated acute kidney injury (SA-AKI), a condition that not only escalates morbidity but also significantly raises sepsis-related mortality rates. Circular RNA circ_001653 has been previously reported to be upregulated in the serum of SA-AKI patients, while the role and underlying mechanism of circ_001653 in SA-AKI remains unknown. In this study, we aimed to explore the functional role and the molecular mechanism of circ_001653 in the pathogenesis of SA-AKI. METHODS LPS-stimulated HK-2 cells and ligation and perforation of cecum (CLP)-induced rats were used as in vitro and in vivo models of SA-AKI. The target gene expression levels were measured using qRT-PCR and western blot. Renal function (BUN, sCr, uNGAL, and uKIM-1), and renal pathological changes were detected in septic mice. TUNEL and EdU assays were conducted to measure apoptosis and proliferation rates in vitro. DCFH-DA staining was used to detect ROS levels in vitro and in vivo. Oxidative stress markers (SOD, GSH-Px, MDA, and SOD), and inflammation markers (IL-1β, IL-6, and TNF-α) were determined using commercial kits both in vitro and in vivo. Additionally, gain-and-loss-of-function assays and mechanistic experiments were conducted to explore the regulatory role of circ_001653 in SA-AKI pathogenesis. RESULTS Data showed that circ_001653 expression was high in LPS-stimulated HK-2 cells and CLP-induced rat renal tissue and was mainly localized in the cytoplasm. Notably, circ_001653 silencing alleviated SA-AKI by reducing apoptosis and alleviating oxidative stress and inflammation in HK-2 cells and renal tissue of rats. Mechanistically, it was found that circ_001653 alleviated SA-AKI by recruiting BUD13 to activate the KEAP1/Nrf2/HO-1 signaling pathway. CONCLUSIONS To summarize, our study is the first to reveal elevated expression of circ_001653 in sepsis-associated AKI, and its downregulation effectively attenuates AKI by reducing apoptosis, inflammation, and oxidative stress. Mechanistically, circ_001653 exerts its effects by recruiting BUD13 to activate the KEAP1/Nrf2/HO-1 signaling pathway. These findings suggest circ_001653 as a potential therapeutic target for the drug development of sepsis-associated AKI.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Wei Zhou
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Jianjun Chen
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Liangliang Zhou
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Yingbing Li
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Xufeng Wu
- Department of Emergency Intensive Care Medicine & Emergency Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China
| | - Xia Peng
- Department of Respiratory and Critical Care Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School/The First People's Hospital of Yancheng, No. 166, Yulong West Road, Tinghu District, Yancheng, 224000, Jiangsu, China.
| |
Collapse
|
2
|
Zheng Q, Li X, Xu X, Tang X, Hammad B, Xing J, Zhang D. The mmu_circ_003062, hsa_circ_0075663/miR-490-3p/CACNA1H axis mediates apoptosis in renal tubular cells in association with endoplasmic reticulum stress following ischemic acute kidney injury. Int Immunopharmacol 2024; 132:111956. [PMID: 38554447 DOI: 10.1016/j.intimp.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND While recent studies have suggested a potential involvement of circRNAs in acute kidney injury (AKI) after ischemia, mmu_circ_003062 role is undetermined. METHODS The levels of mmu_circ_003062, miR-490-3p, CACNA1H, GRP78, CHOP and hsa_circ_0075663 were detected by Relative qPCR in Boston University mouse proximal tubule (BUMPT) cells, mouse kidneys, and human renal tubular epithelial (HK-2) cells. Moreover, the levels of hsa_circ_0075663 in serum and urine of patients with AKI following cardiopulmonary resuscitation (CPR) were detected by absolute quantitative PCR. Western blot was used to detect the relative expression of the protein. The function and regulatory mechanism of mmu_circ_003062 and hsa_circ_0075663 were investigated through a series of in vitro and in vivo experiments, including bioinformatic prediction, luciferase reporter assays, FISH, FCM, TUNEL staining, and H&E staining. RESULTS It was found that mmu_circ_003062, hsa_circ_0075663 mediated apoptosis after ischemia/reperfusion (I/R) by interaction with miR-490-3p to enhance CACNA1H expression, thereby leading to the upregulation of endoplasmic reticulum stress (ERS)-relevant proteins GRP78 and CHOP. Ultimately, mmu_circ_003062 downregulation significantly ameliorated ischemic AKI by modulating the miR-490-3p/CACNA1H/GRP78 and CHOP pathway. Furthermore, the plasma and urinary levels of hsa_circ_0075663 in patients with AKI following CPR were significantly higher than non-AKI patients, exhibited a strongly correlation with serum creatinine. CONCLUSION The involvement of mmu_circ_003062, hsa_circ_0075663/miR-490-3p/CACNA1H/GRP78 and CHOP axis is significant in the development of ischemic AKI. Moreover, hsa_circ_0075663 has potential as an early diagnostic biomarker.
Collapse
Affiliation(s)
- Qiang Zheng
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaozhou Li
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuan Xu
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bacha Hammad
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jihong Xing
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Li Z, Xing J. Potential therapeutic applications of circular RNA in acute kidney injury. Biomed Pharmacother 2024; 174:116502. [PMID: 38569273 DOI: 10.1016/j.biopha.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome characterized by a rapid deterioration in renal function, manifested by a significant increase in creatinine and a sharp decrease in urine output. The incidence of morbidity and mortality associated with AKI is on the rise, with most patients progressing to chronic kidney disease or end-stage renal disease. Treatment options for patients with AKI remain limited. Circular RNA (circRNA) is a wide and diverse class of non-coding RNAs that are present in a variety of organisms and are involved in gene expression regulation. Studies have shown that circRNA acts as a competing RNA, is involved in disease occurrence and development, and has potential as a disease diagnostic and prognostic marker. CircRNA is involved in the regulation of important biological processes, including apoptosis, oxidative stress, and inflammation. This study reviews the current status and progress of circRNA research in the context of AKI.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
4
|
Jiang L, Huang M, Ge J, Zhang X, Liu Y, Liu H, Liu X, Jiang L. Circular RNA hsa_circ_0005519 contributes to acute kidney injury via sponging microRNA-98-5p. BMC Nephrol 2024; 25:107. [PMID: 38504194 PMCID: PMC10949765 DOI: 10.1186/s12882-024-03544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND This study intends to explore the role and molecular mechanism of hsa_circ_0005519 in acute kidney injury (AKI). METHODS We conducted reverse transcription-qPCR for human serum to determine levels of hsa_circ_0005519 in AKI patients and healthy controls. Hsa_circ_0005519 was inhibited for expression in HK-2 cells using specific siRNAs. A number of techniques, MTT and ELISA assays, were used to analyze the potential role of hsa_circ_0005519 in cell viability, oxidative stress, and inflammation of LPS-induced HK-2 cells. RESULTS The serum of patients with AKI exhibited a significant increase in hsa_circ_0005519 expression, compared with healthy controls. Hsa_circ_0005519 was knockdown by siRNA, and its knockdown led to cell viability increase in LPS-induced HK-2 cells. Inhibition of hsa_circ_0005519 can reverse the TNF-α, IL-6 and IL-1β increase in LPS-induced HK-2 cells. Inhibiting hsa_circ_0005519 led to downregulation of MPO and MDA levels. MiR-98-5p was a downstream miRNA for hsa_circ_0005519. MiR-98-5p can offset the effects of hsa_circ_0005519 on LPS-induced HK-2 cells. IFG1R was a target gene for miR-98-5p. CONCLUSIONS These findings indicate that the highly expressed hsa_circ_0005519 plays a promoting role in AKI.
Collapse
Affiliation(s)
- Linsen Jiang
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Manxin Huang
- School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jun Ge
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China
| | - Xuefeng Zhang
- Department of Pharmacy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Ye Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China
| | - Hang Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China
| | - Xiaoming Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717, Jinbu Street, Muping District, Yantai, 264100, China.
| | - Lili Jiang
- Department of Nephrology, Youyang Tujia and Miao Autonomous County People's Hospital, No.102, Middle Road, Taohuayuan Avenue, Taohuayuan Street, Youyang County, Chongqing, 409800, China.
| |
Collapse
|
5
|
Sabet Sarvestani F, Afshari A, Azarpira N. The role of non-protein-coding RNAs in ischemic acute kidney injury. Front Immunol 2024; 15:1230742. [PMID: 38390339 PMCID: PMC10881863 DOI: 10.3389/fimmu.2024.1230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Acute kidney injury (AKI) is a condition characterized by a rapid decline in kidney function within a span of 48 hours. It is influenced by various factors including inflammation, oxidative stress, excessive calcium levels within cells, activation of the renin-angiotensin system, and dysfunction in microcirculation. Ischemia-reperfusion injury (IRI) is recognized as a major cause of AKI; however, the precise mechanisms behind this process are not yet fully understood and effective treatments are still needed. To enhance the accuracy of diagnosing AKI during its early stages, the utilization of innovative markers is crucial. Numerous studies suggest that certain noncoding RNAs (ncRNAs), such as long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), play a central role in regulating gene expression and protein synthesis. These ncRNAs are closely associated with the development and recovery of AKI and have been detected in both kidney tissue and bodily fluids. Furthermore, specific ncRNAs may serve as diagnostic markers and potential targets for therapeutic interventions in AKI. This review aims to summarize the functional roles and changes observed in noncoding RNAs during ischemic AKI, as well as explore their therapeutic potential.
Collapse
Affiliation(s)
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Lv P, Huang J, Yang Q, Yang T, Cao X, Liu O, Zhang Z. Analysis of circRNA profiles and clinical value in Stevens-Johnson syndrome and toxic epidermal necrolysis. Exp Dermatol 2023; 32:2084-2093. [PMID: 37750014 DOI: 10.1111/exd.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Severe cutaneous adverse drug reactions, including Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), are challenging to be early diagnosed and evaluate their prognoses. This investigation aimed to analyse the expression profiles of SJS/TEN in peripheral blood mononuclear cells (PBMC) and assess the correlation between circular RNA (circRNA) and disease severity. Sixteen SJS/TEN patients and sixteen controls were enrolled and serum samples of both groups were obtained. CircRNA expression profiles in three SJS/TEN patients and three controls were detected by RNA sequencing and bioinformatic analyses were then performed. The differentially expressed circRNAs were verified by quantitative polymerase chain reaction (qPCR). Then, analysing the correlation of circRNAs with the toxic epidermal necrolysis-specific severity of illness score (SCORTEN) and the epidermal detachment area. A total of 134 circRNAs were differentially expressed in the PBMCs of SJS/TEN individuals, according to our results. The qPCR showed that three circRNAs (hsa_circ_0000711, hsa_circ_0083619 and hsa_circ_0005615) were down-regulated, and one circRNA (hsa_circ_0003028) was up-regulated, which were compatible with the sequencing findings. The concentration of hsa_circ_0083619 was closely associated with the SCORTEN scale (r = -0.581, p = 0.037) and the epidermal detachment area (r = -0.576, p = 0.039). The circRNA-miRNA-mRNA prediction network was used to construct the hsa_circ_0083619/miR-18a-5p/BCL2L10 axis. The hsa_circ_0083619 could serve as a disease severity indicator for SJS/TEN. Through bioinformatics analysis, we speculated that hsa_circ_0083619/miR-18a-5p/BCL2L10 axis might play a role in SJS/TEN pathogenesis.
Collapse
Affiliation(s)
- Pan Lv
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiangxia Huang
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qianru Yang
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Yang
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xianwei Cao
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ougen Liu
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhibin Zhang
- Department of Dermatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Xie Z, Tang J, Chen Z, Wei L, Chen J, Liu Q. Human bone marrow mesenchymal stem cell-derived extracellular vesicles reduce inflammation and pyroptosis in acute kidney injury via miR-223-3p/HDAC2/SNRK. Inflamm Res 2023; 72:553-576. [PMID: 36640195 PMCID: PMC9840168 DOI: 10.1007/s00011-022-01653-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Bone marrow mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) have been demonstrated as a potential therapeutic agent in acute kidney injury (AKI). However, little is known about the mechanisms of action of BMSC-derived EVs in AKI. Based on this, our research was designed to investigate the mechanism behind BMSC-derived EVs controlling inflammation and pyroptosis during AKI. METHODS Peripheral blood from AKI patients was used for detection of microRNA (miR)-223-3p, HDAC2, and SNRK expression. An AKI rat model was established, and HK-2 cell injury was induced by lipopolysaccharide (LPS) to establish a cellular model. Co-culture with BMSC-derived EVs and/or gain- and loss-of-function assays were conducted in LPS-treated HK-2 to evaluate the functions of BMSCs-EVs, miR-223-3p, HDAC2, and SNRK. AKI rats were simultaneously injected with EVs and short hairpin RNAs targeting SNRK. The interactions among miR-223-3p, HDAC2, and SNRK were evaluated by RIP, ChIP, and dual-luciferase gene reporter assays. RESULTS Patients with AKI had low miR-223-3p and SNRK expression and high HDAC2 expression in peripheral blood. Mechanistically, miR-223-3p targeted HDAC2 to accelerate SNRK transcription. In LPS-treated HK-2 cells, BMSCs-EVs overexpressing miR-223-3p increased cell viability and diminished cell apoptosis, KIM-1, LDH, IL-1β, IL-6, TNF-α, NLRP3, ASC, cleaved caspase-1, and IL-18 expression, and GSDMD cleavage, which was nullified by HDAC2 overexpression or SNRK silencing. In AKI rats, BMSCs-EV-shuttled miR-223-3p reduced CRE and BUN levels, apoptosis, inflammation, and pyroptosis, which was abrogated by SNRK silencing. CONCLUSION Conclusively, BMSC-derived EV-encapsulated miR-223-3p mitigated AKI-induced inflammation and pyroptosis by targeting HDAC2 and promoting SNRK transcription.
Collapse
Affiliation(s)
- Zhijuan Xie
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Jun Tang
- Department of Emergency, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lanji Wei
- Health Management Center, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jianying Chen
- Department of Rheumatology and Immunology, Hunan Province Mawangdui Hospital, Changsha, 410016, Hunan, People's Republic of China
| | - Qin Liu
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Liao Y, Peng X, Li X, Wu D, Qiu S, Tang X, Zhang D. CircRNA_45478 promotes ischemic AKI by targeting the miR-190a-5p/PHLPP1 axis. FASEB J 2022; 36:e22633. [PMID: 36315192 DOI: 10.1096/fj.202201070r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
A few studies suggested that circular RNAs were involved in the development of ischemic acute kidney injury (AKI). However, the function and regulation mechanism of circRNA_45478 in ischemic AKI remains unknown. In the present study, ischemic injury induced the expressions of circRNA_45478 in mouse proximal tubule-derived cell lines (BUMPT cells) and kidneys of C57BL/6 mice. Functionally, circRNA_45478 mediated I/R-induced apoptosis in BUMPT cells. Mechanistically, circRNA_45478 upregulated the expression of Pleckstrin homology (PH) domain leucine-rich repeat protein phosphatase 1 (PHLPP1) via sponging of microRNA (miR)-190a-5p. Finally, inhibition of circRNA_45478 significantly alleviated the progression of ischemic AKI through regulation of the miR-190a-5p/PHLPP1 pathway. Taken together, our data showed that circRNA_45478/miR-190a-5p/PHLPP1 axis mediated the progression of ischemic AKI.
Collapse
Affiliation(s)
- Yingjun Liao
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiongjun Peng
- Department of Medical Equipment, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dengke Wu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuangfa Qiu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xianming Tang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
9
|
Wong R, Zhang Y, Zhao H, Ma D. Circular RNAs in organ injury: recent development. J Transl Med 2022; 20:533. [PMID: 36401311 PMCID: PMC9673305 DOI: 10.1186/s12967-022-03725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
Circular ribonucleic acids (circRNAs) are a class of long non-coding RNA that were once regarded as non-functional transcription byproducts. However, recent studies suggested that circRNAs may exhibit important regulatory roles in many critical biological pathways and disease pathologies. These studies have identified significantly differential expression profiles of circRNAs upon changes in physiological and pathological conditions of eukaryotic cells. Importantly, a substantial number of studies have suggested that circRNAs may play critical roles in organ injuries. This review aims to provide a summary of recent studies on circRNAs in organ injuries with respect to (1) changes in circRNAs expression patterns, (2) main mechanism axi(e)s, (3) therapeutic implications and (4) future study prospective. With the increasing attention to this research area and the advancement in high-throughput nucleic acid sequencing techniques, our knowledge of circRNAs may bring fruitful outcomes from basic and clinical research.
Collapse
|
10
|
So BYF, Yap DYH, Chan TM. Circular RNAs in Acute Kidney Injury: Roles in Pathophysiology and Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23158509. [PMID: 35955644 PMCID: PMC9369393 DOI: 10.3390/ijms23158509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition, results in patient morbidity and mortality, and incurs considerable health care costs. Sepsis, ischaemia-reperfusion injury (IRI) and drug nephrotoxicity are the leading causes. Mounting evidence suggests that perturbations in circular RNAs (circRNAs) are observed in AKI of various aetiologies, and have pathogenic significance. Aberrant circRNA expressions can cause altered intracellular signalling, exaggerated oxidative stress, increased cellular apoptosis, excess inflammation, and tissue injury in AKI due to sepsis or IRI. While circRNAs are dysregulated in drug-induced AKI, their roles in pathogenesis are less well-characterised. CircRNAs also show potential for clinical application in diagnosis, prognostication, monitoring, and treatment. Prospective observational studies are needed to investigate the role of circRNAs in the clinical management of AKI, with special focus on the safety of therapeutic interventions targeting circRNAs and the avoidance of untoward off-target effects.
Collapse
|