1
|
Shrode RL, Cady N, Jensen SN, Borcherding N, Mangalam AK. Isoflavone consumption reduces inflammation through modulation of phenylalanine and lipid metabolism. Metabolomics 2022; 18:84. [PMID: 36289122 PMCID: PMC10148689 DOI: 10.1007/s11306-022-01944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Phytoestrogens found in soy, fruits, peanuts, and other legumes, have been identified as metabolites capable of providing beneficial effects in multiple pathological conditions due to their ability to mimic endogenous estrogen. Interestingly, the health-promoting effects of some phytoestrogens, such as isoflavones, are dependent on the presence of specific gut bacteria. Specifically, gut bacteria can metabolize isoflavones into equol, which has a higher affinity for endogenous estrogen receptors compared to dietary isoflavones. We have previously shown that patients with multiple sclerosis (MS), a neuroinflammatory disease, lack gut bacteria that are able to metabolize phytoestrogen. Further, we have validated the importance of both isoflavones and phytoestrogen-metabolizing gut bacteria in disease protection utilizing an animal model of MS. Specifically, we have shown that an isoflavone-rich diet can protect from neuroinflammatory diseases, and that protection was dependent on the ability of gut bacteria to metabolize isoflavones into equol. Additionally, mice on a diet with isoflavones showed an anti-inflammatory response compared to the mice on a diet lacking isoflavones. However, it is unknown how isoflavones and/or equol mediates their protective effects, especially their effects on host metabolite levels. OBJECTIVES In this study, we utilized untargeted metabolomics to identify metabolites found in plasma that were modulated by the presence of dietary isoflavones. RESULTS We found that the consumption of isoflavones increased anti-inflammatory monounsaturated fatty acids and beneficial polyunsaturated fatty acids while reducing pro-inflammatory glycerophospholipids, sphingolipids, phenylalanine metabolism, and arachidonic acid derivatives. CONCLUSION Isoflavone consumption alters the systemic metabolic landscape through concurrent increases in monounsaturated fatty acids and beneficial polyunsaturated fatty acids plus reduction in pro-inflammatory metabolites and pathways. This highlights a potential mechanism by which an isoflavone diet may modulate immune-mediated disease.
Collapse
Affiliation(s)
- Rachel L Shrode
- Department of Informatics, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicole Cady
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samantha N Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
- Division of Gastroenterology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Ashutosh K Mangalam
- Department of Informatics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Lodha D, Das S, Hati S. Antioxidant activity, total phenolic content and biotransformation of isoflavones during soy lactic‐fermentations. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dikshita Lodha
- Department of Biochemistry St. Xavier’s College (Autonomous) Ahmedabad India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University, Tura Campus Tura India
| | - Subrota Hati
- Dairy Microbiology Department SMC College of Dairy Science, Anand Agricultural University Anand India
| |
Collapse
|
3
|
Strategic ultrasound-induced stress response of lactic acid bacteria on enhancement of β-glucosidase activity for bioconversion of isoflavones in soymilk. J Microbiol Methods 2018; 148:145-150. [DOI: 10.1016/j.mimet.2018.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 11/19/2022]
|