1
|
Abdelhakiem MAH, Soliman GI, Rushdi M, Elsayed HK. Effect of parasitic infestation on carpal synovial constituents in donkeys (Equus asinus). BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study was carried out to examine the physical, microscopical and biochemical parameters of the synovial fluid from the carpal joints of donkeys suffering from Strongylus spp. and Parascaris equorum infestation. Forty-five donkeys were selected out from a total of sixty animals based on faecal analysis. Animals were divided into 3 groups, which included Strongylus spp. (n=23), mixed infestation (n=17, Strongylus spp. and Parascaris equorum) and control (n=5) groups. The aspirated synovial fluid from all animals (n=45) was examined physically and microscopically. Then, the total protein, albumin, globulins, calcium, phosphorus, magnesium, glucose levels, and gamma glutamyl transferase (GGT) and alkaline phosphatase (ALP) activities were measured in the serum and synovial fluid of all animals. The results revealed no changes of the physical and microscopical features of the synovial fluid of the infested and control animals but there were significant decreases in total protein, albumin, globulin, glucose and magnesium levels in the serum of Strongylus and mixed infection groups. The synovial fluid analysis exhibited an increase of calcium and phosphorus levels, and ALP activity, and decreased levels of total protein, glucose and GGT in Strongylus and mixed groups. The results of this study suggested significant changes in some biochemical parameters in both serum and synovial fluids in donkeys suffering from parasitic infestation.
Collapse
Affiliation(s)
- M. A. H. Abdelhakiem
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - G. I. Soliman
- Postgraduate researcher, Elkoseyia City, Assiut Governorate, Egypt
| | - M. Rushdi
- Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - H. K. Elsayed
- Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Egypt
| |
Collapse
|
2
|
Battaglia M, Garrett-Sinha LA. Bacterial infections in lupus: Roles in promoting immune activation and in pathogenesis of the disease. J Transl Autoimmun 2020; 4:100078. [PMID: 33490939 PMCID: PMC7804979 DOI: 10.1016/j.jtauto.2020.100078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bacterial infections of the lung, skin, bloodstream and other tissues are common in patients with systemic lupus erythematosus (lupus) and are often more severe and invasive than similar infections in control populations. A variety of studies have explored the changes in bacterial abundance in lupus patients, the rates of infection and the influence of particular bacterial species on disease progression, using both human patient samples and mouse models of lupus. OBJECTIVE The aim of this review is to summarize human and mouse studies that describe changes in the bacterial microbiome in lupus, the role of a leaky gut in stimulating inflammation, identification of specific bacterial species associated with lupus, and the potential roles of certain common bacterial infections in promoting lupus progression. METHODS Information was collected using searches of the Pubmed database for articles relevant to bacterial infections in lupus and to microbiome changes associated with lupus. RESULTS The reviewed studies demonstrate significant changes in the bacterial microbiome of lupus patients as compared to control subjects and in lupus-prone mice compared to control mice. Furthermore, there is evidence supporting the existence of a leaky gut in lupus patients and in lupus-prone mice. This leaky gut may allow live bacteria or bacterial components to enter the circulation and cause inflammation. Invasive bacterial infections are more common and often more severe in lupus patients. These include infections caused by Staphylococcus aureus, Salmonella enterica, Escherichia coli, Streptococcus pneumoniae and mycobacteria. These bacterial infections can trigger increased immune activation and inflammation, potentially stimulating activation of autoreactive lymphocytes and leading to worsening of lupus symptoms. CONCLUSIONS Together, the evidence suggests that lupus predisposes to infection, while infection may trigger worsening lupus, leading to a feedback loop that may reinforce autoimmune symptoms.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
3
|
Chen Z, Bozec A, Ramming A, Schett G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 2020; 15:9-17. [PMID: 30341437 DOI: 10.1038/s41584-018-0109-2] [Citation(s) in RCA: 407] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by a failure of spontaneous resolution of inflammation. Although the pro-inflammatory cytokines and mediators that trigger RA have been the focus of intense investigations, the regulatory and anti-inflammatory cytokines responsible for the suppression and resolution of disease in a context-dependent manner have been less well characterized. However, knowledge of the pathways that control the suppression and resolution of inflammation in RA is clinically relevant and conceptually important for understanding the pathophysiology of the disease and for the development of treatments that enable long-term remission. Cytokine-mediated processes such as the activation of T helper 2 cells by IL-4 and IL-13, the resolution of inflammation by IL-9, IL-5-induced eosinophil expansion, IL-33-mediated macrophage polarization, the production of IL-10 by regulatory B cells and IL-27-mediated suppression of lymphoid follicle formation are all involved in governing the regulation and resolution of inflammation in RA. By better understanding these immune-regulatory signalling pathways, new therapeutic strategies for RA can be envisioned that aim to balance and resolve, rather than suppress, inflammation.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aline Bozec
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitatsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
4
|
Abdoli A, Mirzaian Ardakani H. Potential application of helminth therapy for resolution of neuroinflammation in neuropsychiatric disorders. Metab Brain Dis 2020; 35:95-110. [PMID: 31352539 DOI: 10.1007/s11011-019-00466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
Abstract
Neuropsychiatric disorders (NPDs) are among the major debilitating disorders worldwide with multiple etiological factors. However, in recent years, psychoneuroimmunology uncovered the role of inflammatory condition and autoimmune disorders in the etiopathogenesis of different NPDs. Hence, resolution of inflammation is a new therapeutic target of NPDs. On the other hand, Helminth infections are among the most prevalent infectious diseases in underdeveloped countries, which usually caused chronic infections with minor clinical symptoms. Remarkably, helminths are among the master regulator of inflammatory reactions and epidemiological studies have shown an inverse association between prevalence of autoimmune disorders with these infections. As such, changes of intestinal microbiota are known to be associated with inflammatory conditions in various NPDs. Conversely, helminth colonization alters the intestinal microbiota composition that leads to suppression of intestinal inflammation. In animal models and human studies, helminths or their antigens have shown to be protected against severe autoimmune and allergic disorders, decline the intensity of inflammatory reactions and improved clinical symptoms of the patients. Therefore, "helminthic therapy" have been used for modulation of immune disturbances in different autoimmunity illnesses, such as Multiple Sclerosis (MS) and Inflammatory Bowel Disease (IBD). Here, it is proposed that "helminthic therapy" is able to ameliorate neuroinflammation of NPDs through immunomodulation of inflammatory reactions and alteration of microbiota composition. This review discusses the potential application of "helminthic therapy" for resolution of neuroinflammation in NPDs.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, POBox 74148-46199, Ostad Motahari Ave, Jahrom, Iran.
- Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Langan D, Kim EY, Moudgil KD. Modulation of autoimmune arthritis by environmental 'hygiene' and commensal microbiota. Cell Immunol 2019; 339:59-67. [PMID: 30638679 PMCID: PMC8056395 DOI: 10.1016/j.cellimm.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 12/20/2022]
Abstract
Observations in patients with autoimmune diseases and studies in animal models of autoimmunity have revealed that external environmental factors including exposure to microbes and the state of the host gut microbiota can influence susceptibility to autoimmunity and subsequent disease development. Mechanisms underlying these outcomes continue to be elucidated. These include deviation of the cytokine response and imbalance between pathogenic versus regulatory T cell subsets. Furthermore, specific commensal organisms are associated with enhanced severity of arthritis in susceptible individuals, while exposure to certain microbes or helminths can afford protection against this disease. In addition, the role of metabolites (e.g., short-chain fatty acids, tryptophan catabolites), produced either by the microbes themselves or from their action on dietary products, in modulation of arthritis is increasingly being realized. In this context, re-setting of the microbial dysbiosis in RA using prebiotics, probiotics, or fecal microbial transplant is emerging as a promising approach for the prevention and treatment of arthritis. It is hoped that advances in defining the interplay between gut microbiota, dietary products, and bioactive metabolites would help in the development of therapeutic regimen customized for the needs of individual patients in the near future.
Collapse
Affiliation(s)
- David Langan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD 21201, United States
| | - Eugene Y Kim
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biomedical Sciences, Washington State University, Spokane, WA 99224, United States
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD 21201, United States.
| |
Collapse
|
6
|
Ryan NM, Oghumu S. Role of mast cells in the generation of a T-helper type 2 dominated anti-helminthic immune response. Biosci Rep 2019; 39:BSR20181771. [PMID: 30670631 PMCID: PMC6379226 DOI: 10.1042/bsr20181771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Mast cells are long-lived, innate immune cells of the myeloid lineage which are found in peripheral tissues located throughout the body, and positioned at the interface between the host and the environment. Mast cells are found in high concentrations during helminth infection. Using Kitw-sh mast cell deficient mice, a recently published study in Bioscience Reports by Gonzalez et al. (Biosci. Rep., 2018) focused on the role of mast cells in the immune response to infection by the helminth Hymenolepis diminuta The authors showed that mast cells play a role in the modulation of Th2 immune response characterized by a unique IL-4, IL-5 and IL-13 cytokine profile, as well as subsequent robust worm expulsion during H. diminuta infection. Unlike WT mice which expelled H. diminuta at day 10, Kitw-sh deficient mice displayed delayed worm expulsion (day 14 post infection). Further, a possible role for mast cells in the basal expression of cytokines IL-25, IL-33 and thymic stromal lymphopoietin was described. Deletion of neutrophils in Kitw-sh deficient mice enhanced H. diminuta expulsion, which was accompanied by splenomegaly. However, interactions between mast cells and other innate and adaptive immune cells during helminth infections are yet to be fully clarified. We conclude that the elucidation of mechanisms underlying mast cell interactions with cells of the innate and adaptive immune system during infection by helminths can potentially uncover novel therapeutic applications against inflammatory, autoimmune and neoplastic diseases.
Collapse
Affiliation(s)
- Nathan M Ryan
- Department of Pathology, College of Medicine, Ohio State University Wexner Medical Center, Columbus, OH, U.S.A
| | - Steve Oghumu
- Department of Pathology, College of Medicine, Ohio State University Wexner Medical Center, Columbus, OH, U.S.A.
| |
Collapse
|
7
|
Osada Y, Horie Y, Nakae S, Sudo K, Kanazawa T. STAT6 and IL-10 are required for the anti-arthritic effects of Schistosoma mansoni via different mechanisms. Clin Exp Immunol 2019; 195:109-120. [PMID: 30194773 PMCID: PMC6300695 DOI: 10.1111/cei.13214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
To investigate possible roles of T helper type 2 (Th2) cytokines in the anti-arthritic effects of a blood fluke, Schistosoma mansoni (Sm), for mouse collagen-induced arthritis (CIA), wild-type (WT), signal transducer and activator of transcription 6 (STAT6) knock-out (KO) and interleukin (IL)-10 KO mice were infected with Sm. Three weeks after infection, the mice were immunized with bovine type II collagen (IIC). Arthritis severity was monitored by scoring, measurement of paw thickness and the presence of ankylosis. Serum anti-IIC IgG levels, splenic cytokine production and cytokine gene expression in the popliteal lymph nodes (PLNs) were measured and compared among WT and gene-KO mice. Consistent with our previous findings, Sm infection reduced the arthritis severity in WT mice. Splenic production of IL-17A and tumor necrosis factor (TNF)-α was reduced by the infection. In contrast, Sm infection markedly exacerbated CIA in STAT6 KO mice. In the KO mice, IL-17A production was increased by the infection. Conversely, Sm infection did not affect the exacerbated arthritis in IL-10 KO mice, although IL-17A production was reduced by the helminth. Our results suggest that signaling via STAT6 (presumably IL-4 and/or IL-13) and IL-10 is required for the suppression of CIA by Sm infection, but through different mechanisms. STAT6 was essential for helminth-induced reduction of IL-17A, whereas regulation of the basal arthritis severity by IL-10 was needed in order for it to be sufficiently suppressed by the helminth.
Collapse
Affiliation(s)
- Y. Osada
- Department of Immunology and ParasitologyUniversity of Occupational and Environmental HealthJapanKitakyushuJapan
| | - Y. Horie
- Department of Immunology and ParasitologyUniversity of Occupational and Environmental HealthJapanKitakyushuJapan
| | - S. Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical ScienceUniversity of TokyoTokyoJapan
| | - K. Sudo
- Animal Research CenterTokyo Medical UniversityTokyoJapan
| | - T. Kanazawa
- Department of Immunology and ParasitologyUniversity of Occupational and Environmental HealthJapanKitakyushuJapan
| |
Collapse
|
8
|
L4 stage Heligmosomoides polygyrus prevents the maturation of dendritic JAWS II cells. Exp Parasitol 2019; 196:12-21. [DOI: 10.1016/j.exppara.2018.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022]
|
9
|
Apiwattanakul N, Palipane M, Samarasinghe AE. Immune responses to fungal aeroallergen in Heligmosomoides polygyrus-infected mice vary by age. Cell Immunol 2017; 317:26-36. [PMID: 28476343 DOI: 10.1016/j.cellimm.2017.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/07/2017] [Accepted: 04/26/2017] [Indexed: 12/26/2022]
Abstract
Parasite infections in the developing world have been considered to promote resistance to immune-mediated diseases such as asthma. Mouse studies have shown that helminths and their products reduce the development of allergic asthma. Since epidemiologic studies that show similar protection are in relation to geohelminth infections that occur in early life, we hypothesized that the parasite-mediated protection against asthma may differ by age. Mice infected with Heligmosomoides polygyrus at 3-weeks of age had similar asthma phenotype compared to mice infected at 28-weeks of age wherein airway eosinophilia was unaltered but tissue inflammation and GC metaplasia were reduced. In contrast, mice infected at 18-weeks of age had elevated macrophagic airway inflammation with accompanying tissue pathology. The presence of γδ T cells and Treg cells in the airways was also regulated by age at worm infection. Our findings demonstrate the importance of age in immune responses that may regulate gut and lung diseases.
Collapse
Affiliation(s)
- Nopporn Apiwattanakul
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Maneesha Palipane
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, United States; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Amali Eashani Samarasinghe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, United States; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, United States.
| |
Collapse
|
10
|
Smallwood TB, Giacomin PR, Loukas A, Mulvenna JP, Clark RJ, Miles JJ. Helminth Immunomodulation in Autoimmune Disease. Front Immunol 2017; 8:453. [PMID: 28484453 PMCID: PMC5401880 DOI: 10.3389/fimmu.2017.00453] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/03/2017] [Indexed: 12/26/2022] Open
Abstract
Helminths have evolved to become experts at subverting immune surveillance. Through potent and persistent immune tempering, helminths can remain undetected in human tissues for decades. Redirecting the immunomodulating "talents" of helminths to treat inflammatory human diseases is receiving intensive interest. Here, we review therapies using live parasitic worms, worm secretions, and worm-derived synthetic molecules to treat autoimmune disease. We review helminth therapy in both mouse models and clinical trials and discuss what is known on mechanisms of action. We also highlight current progress in characterizing promising new immunomodulatory molecules found in excretory/secretory products of helminths and their potential use as immunotherapies for acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Taylor B Smallwood
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jason P Mulvenna
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
El-Henawy AA, Hafez EAR, Nabih N, Shalaby NM, Mashaly M. Anti-Toxoplasma antibodies in Egyptian rheumatoid arthritis patients. Rheumatol Int 2017; 37:785-790. [DOI: 10.1007/s00296-017-3703-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
|
12
|
Sarter K, Kulagin M, Schett G, Harris NL, Zaiss MM. Inflammatory arthritis and systemic bone loss are attenuated by gastrointestinal helminth parasites. Autoimmunity 2017; 50:151-157. [PMID: 28084120 DOI: 10.1080/08916934.2016.1261837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infections with different helminth species have been observed to ameliorate a variety of chronic inflammatory diseases. Herein, we show that the natural murine helminth species, Heligmosomoides polygyrus bakeri (Hp) is capable of attenuating disease severity in two different inflammatory arthritis models. Furthermore, we show that excretory-secretory (ES) products from Hp directly suppress osteoclast differentiation in vitro. Taken together, these results demonstrate that helminth infections can dampen autoimmune diseases and highlight a previously unrecognized and important role for ES products, by directly impacting on bone destruction.
Collapse
Affiliation(s)
- Kerstin Sarter
- a Interdisciplinary Center for Clinical Research Laboratory (IZKF Würzburg), Department of Internal Medicine II, University of Würzburg , Würzburg , Germany
| | - Manuel Kulagin
- b Ecole Polytechnique Fédérale de Lausanne (EPFL), Global Health Institute , Lausanne , Switzerland , and
| | - Georg Schett
- c Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen , Erlangen , Germany
| | - Nicola L Harris
- b Ecole Polytechnique Fédérale de Lausanne (EPFL), Global Health Institute , Lausanne , Switzerland , and
| | - Mario M Zaiss
- b Ecole Polytechnique Fédérale de Lausanne (EPFL), Global Health Institute , Lausanne , Switzerland , and.,c Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen , Erlangen , Germany
| |
Collapse
|
13
|
Treatment with Cestode Parasite Antigens Results in Recruitment of CCR2+ Myeloid Cells, the Adoptive Transfer of Which Ameliorates Colitis. Infect Immun 2016; 84:3471-3483. [PMID: 27672083 DOI: 10.1128/iai.00681-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Awareness of the immunological underpinnings of host-parasite interactions may reveal immune signaling pathways that could be used to treat inflammatory disease in humans. Previously we showed that infection with the rat tapeworm, Hymenolepis diminuta, used as a model helminth, or systemic delivery of worm antigen (HdAg) significantly reduced the severity of dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice. Extending these analyses, intraperitoneal injection of HdAg dose-dependently suppressed dextran sodium sulfate (DSS)-induced colitis, and this was paralleled by reduced gamma interferon (IFN-γ), interleukin-17 (IL-17), and tumor necrosis factor alpha (TNF-α) production and increased IL-10 production from mitogen-activated splenocytes. Treatment with HdAg resulted in a CCR2-dependent recruitment of CDllb+ F4/80+ Ly6Chi Gr-1lo monocyte-like cells into the peritoneum 24 h later that were predominantly programmed death ligand 1 (PD-L1) positive and CXCR2 negative. In vitro assays indicated that these cells were unable to suppress T cell proliferation but enhanced IL-10 and IL-4 production from activated T cells. Adoptive transfer of the HdAg-recruited monocytic cells into naive mice blocked DSS-induced colitis. These findings add to the variety of means by which treatment with parasitic helminth-derived antigens can ameliorate concomitant disease. A precise understanding of the mechanism(s) of action of HdAg and other helminth-derived antigens (and a parallel consideration of putative side effects) may lead to the development of novel therapies for human idiopathic disorders such as inflammatory bowel disease.
Collapse
|
14
|
Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, Piersigilli A, Menin L, Walker AW, Rougemont J, Paerewijck O, Geldhof P, McCoy KD, Macpherson AJ, Croese J, Giacomin PR, Loukas A, Junt T, Marsland BJ, Harris NL. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation. Immunity 2015; 43:998-1010. [PMID: 26522986 PMCID: PMC4658337 DOI: 10.1016/j.immuni.2015.09.012] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 07/12/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
Intestinal helminths are potent regulators of their host’s immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions. The microbiota contributes to helminth-induced modulation of allergic asthma Cecal microbial communities are altered in helminth-infected mice Helminth infection increases microbial-derived short chain fatty acids GPR41 mediates helminth-induced Treg cell suppressor function
Collapse
Affiliation(s)
- Mario M Zaiss
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Alexis Rapin
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Luc Lebon
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Lalit Kumar Dubey
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ilaria Mosconi
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Kerstin Sarter
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Alessandra Piersigilli
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Alan W Walker
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK; Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK
| | - Jacques Rougemont
- Bioinformatics and Biostatistics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Oonagh Paerewijck
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Peter Geldhof
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kathleen D McCoy
- Maurice Müller Laboratories (DKF), University Hospital of Bern, Bern 3010, Switzerland
| | - Andrew J Macpherson
- Maurice Müller Laboratories (DKF), University Hospital of Bern, Bern 3010, Switzerland
| | - John Croese
- Department of Gastroenterology and Hepatology, The Prince Charles Hospital, Chermside, Brisbane, QLD 4032, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia
| | - Paul R Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia
| | | | - Benjamin J Marsland
- Faculty of Biology and Medicine, University of Lausanne, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne 1011, Switzerland
| | - Nicola L Harris
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| |
Collapse
|
15
|
Versini M, Jeandel PY, Bashi T, Bizzaro G, Blank M, Shoenfeld Y. Unraveling the Hygiene Hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications. BMC Med 2015; 13:81. [PMID: 25879741 PMCID: PMC4396177 DOI: 10.1186/s12916-015-0306-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/02/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The Hygiene Hypothesis (HH) attributes the dramatic increase in autoimmune and allergic diseases observed in recent decades in Western countries to the reduced exposure to diverse immunoregulatory infectious agents. This theory has since largely been supported by strong epidemiological and experimental evidence. DISCUSSION The analysis of these data along with the evolution of the Western world's microbiome enable us to obtain greater insight into microorganisms involved in the HH, as well as their regulatory mechanisms on the immune system. Helminthes and their derivatives were shown to have a protective role. Helminthes' broad immunomodulatory properties have already begun to be exploited in clinical trials of autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. SUMMARY In this review, we will dissect the microbial actors thought to be involved in the HH as well as their immunomodulatory mechanisms as emphasized by experimental studies, with a particular attention on parasites. Thereafter, we will review the early clinical trials using helminthes' derivatives focusing on autoimmune diseases.
Collapse
Affiliation(s)
- Mathilde Versini
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
- Department of Internal Medicine, Archet-1 Hospital, University of Nice-Sophia-Antipolis, 151 Route de Saint Antoine de Ginestière, 06202, Nice, France.
| | - Pierre-Yves Jeandel
- Department of Internal Medicine, Archet-1 Hospital, University of Nice-Sophia-Antipolis, 151 Route de Saint Antoine de Ginestière, 06202, Nice, France.
| | - Tomer Bashi
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
| | - Giorgia Bizzaro
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
| | - Miri Blank
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Israel.
- The Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
16
|
Finlay CM, Walsh KP, Mills KHG. Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases. Immunol Rev 2014; 259:206-30. [PMID: 24712468 DOI: 10.1111/imr.12164] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helminth parasites are highly successful pathogens, chronically infecting a quarter of the world's population, causing significant morbidity but rarely causing death. Protective immunity and expulsion of helminths is mediated by T-helper 2 (Th2) cells, type 2 (M2) macrophages, type 2 innate lymphoid cells, and eosinophils. Failure to mount these type 2 immune responses can result in immunopathology mediated by Th1 or Th17 cells. Helminths have evolved a wide variety of approaches for immune suppression, especially the generation of regulatory T cells and anti-inflammatory cytokines interleukin-10 and transforming growth factor-β. This is a very effective strategy for subverting protective immune responses to prolong their survival in the host but has the bystander effect of modulating immune responses to unrelated antigens. Epidemiological studies in humans have shown that infection with helminth parasites is associated with a low incidence of allergy/asthma and autoimmunity in developing countries. Experimental studies in mice have demonstrated that regulatory immune responses induced by helminth can suppress Th2 and Th1/Th17 responses that mediate allergy and autoimmunity, respectively. This has provided a rational explanation of the 'hygiene hypothesis' and has also led to the exploitation of helminths or their immunomodulatory products in the development of new immunosuppressive therapies for inflammatory diseases in humans.
Collapse
Affiliation(s)
- Conor M Finlay
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
17
|
Osada Y, Yamada S, Nakae S, Sudo K, Kanazawa T. Reciprocal effects of Schistosoma mansoni infection on spontaneous autoimmune arthritis in IL-1 receptor antagonist-deficient mice. Parasitol Int 2014; 64:13-7. [PMID: 25220583 DOI: 10.1016/j.parint.2014.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 01/10/2023]
Abstract
Schistosome infections have been shown to prevent inflammation in induced-type arthritis models. However, its effects on spontaneous arthritis remain unknown. We here investigated the effects of Schistosoma mansoni (Sm) infection on spontaneous autoimmune arthritis in IL-1 receptor antagonist (IL-1Ra)-deficient mice. Sm infection partially reduced the severity of arthritis in male IL-1Ra-deficient mice. The splenic responses of IL-17 and TNF-α were reduced, while those of IL-4 and IL-10 were enhanced by the infection. However, Sm infection increased IgG rheumatoid factor and anti-dsDNA IgG serum levels. These results suggest that Sm infection has both ameliorating and exacerbating effects on autoimmunity in IL-1Ra-deficient mice.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan.
| | - Sohsuke Yamada
- Department of 2nd Pathology and Cell Biology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo 160-0022, Japan
| | - Tamotsu Kanazawa
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
18
|
Heligmosomoides polygyrus infection reduces severity of type 1 diabetes induced by multiple low-dose streptozotocin in mice via STAT6- and IL-10-independent mechanisms. Exp Parasitol 2013; 135:388-96. [DOI: 10.1016/j.exppara.2013.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/01/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
|
19
|
Khan AR, Fallon PG. Helminth therapies: translating the unknown unknowns to known knowns. Int J Parasitol 2013; 43:293-9. [PMID: 23291459 DOI: 10.1016/j.ijpara.2012.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 12/26/2022]
Abstract
The use of live helminth infections is currently in clinical trials as a novel approach for the treatment of a range of allergic and autoimmune diseases. This rapid progression from observational studies some 20 years ago to helminth clinical trials can be attributed to huge advances in not just pre-clinical and clinical evidence, pertaining to the efficacy of these parasites in unrelated diseases, but also a greater understanding of the complex immunological mechanisms that underpin these effects. Helminths have exerted significant evolutionary selective pressures on the host immune genome or "immunome". Studies on helminths were pivotal in a paradigm shift in immunology with recent discoveries of a number of novel immune cell populations. Critically, these new discoveries highlight the need to further understand the underlying mechanism behind the desirable therapeutic effects that helminths offer. With these unknown unknowns there is the distinct possibility that a true, fundamental modus operandi for helminth therapy will arrive long after it has been established in the clinic.
Collapse
Affiliation(s)
- Adnan R Khan
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, and National Children's Research Centre, Our Lady's Children's Hospital, Ireland
| | | |
Collapse
|
20
|
Ortiz-Flores AM, Ledesma-Soto Y, Calleja EA, Rodríguez-Sosa M, Juárez I, Terrazas LI. Taenia crassiceps infection does not influence the development of experimental rheumatoid arthritis. BIOMED RESEARCH INTERNATIONAL 2012; 2013:316980. [PMID: 23509709 PMCID: PMC3591108 DOI: 10.1155/2013/316980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/12/2012] [Indexed: 12/01/2022]
Abstract
It was previously reported by our group that infection with Taenia crassiceps reduces incidence and severity of inflammatory and autoimmune experimental diseases like type 1 diabetes and experimental autoimmune encephalomyelitis. In this research, we set out to study whether infection with T. crassiceps would affect the development of experimental rheumatoid arthritis (RA). We found that mice infected with the parasite and induced with experimental RA showed similar clinical scores as the noninfected experimental RA group; systemic cytokines were not affected while anti-CII Abs were higher in the infected group. Histological evaluation showed damage in both infected and noninfected experimental RA-induced groups and although some surface molecules such as PDL-2 and MR which are associated with immunomodulatory mechanisms were upregulated in the infected and RA-induced group as compared to the noninfected RA group, they did not exert any changes in the outcome of experimental RA. Thus, we determined that infection with T. crassiceps does not influence the outcome of experimental RA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/complications
- Arthritis, Experimental/immunology
- Arthritis, Experimental/parasitology
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/parasitology
- Autoimmune Diseases/immunology
- Cell Membrane/metabolism
- Disease Models, Animal
- Immunoglobulin G/immunology
- Inflammation
- Interferon-gamma/metabolism
- Macrophages, Peritoneal/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Taenia
- Taeniasis/complications
- Taeniasis/immunology
Collapse
Affiliation(s)
- Aaxin M. Ortiz-Flores
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, MEX, Mexico
| | - Yadira Ledesma-Soto
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, MEX, Mexico
| | - Elsa A. Calleja
- Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, MEX, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, MEX, Mexico
| | - Imelda Juárez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, MEX, Mexico
| | - Luis I. Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, MEX, Mexico
| |
Collapse
|
21
|
Hernandez JLR, Leung G, McKay DM. Cestode regulation of inflammation and inflammatory diseases. Int J Parasitol 2012; 43:233-43. [PMID: 23058631 DOI: 10.1016/j.ijpara.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/13/2022]
Abstract
Helminth parasites are masters of immune regulation; a likely prerequisite for long-term survival by circumventing their hosts' attempt to eradicate them. From a translational perspective, knowledge of immune events as a response to infection with a helminth parasite could be used to reduce the intensity of unwanted inflammatory reactions. Substantial data have accumulated showing that inflammatory reactions that promote a variety of auto-inflammatory diseases are dampened as a consequence of infection with helminth parasites, via either the mobilization of an anti-worm spectrum of immune events or by the direct effect of secretory/excretory bioactive immunomodulatory molecules released from the parasite. However, many issues are outstanding in the definition of the mechanism(s) by which infection with helminth parasites can affect the outcome, positively or negatively, of concomitant disease. We focus on a subgroup of this complex group of metazoan parasites, the cestodes, summarizing studies from rodent models that illustrate if, and by what mechanisms, infection with tapeworms ameliorate or exaggerate disease in their host. The ability of infection with cestodes, or other classes of helminth, to worsen a disease course or confer susceptibility to intracellular pathogens should be carefully considered in the context of 'helminth therapy'. In addition, poorly characterised cestode extracts can regulate murine and human immunocyte function, yet the impact of these in the context of autoimmune or allergic diseases is poorly understood. Thus, studies with cestodes, as representative helminths, have helped cement the concept that infection with parasitic helminths can inhibit concomitant disease; however, issues relating to long-term effects, potential side-effects, mixed pathogen infections and purification of immunomodulatory molecules from the parasite remain as challenges that need to be addressed in order to achieve the use of helminths as anti-inflammatory agents for human diseases.
Collapse
Affiliation(s)
- Jose-Luis Reyes Hernandez
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
22
|
El-Malky M, Nabih N, Heder M, Saudy N, El-Mahdy M. Helminth infections: therapeutic potential in autoimmune disorders. Parasite Immunol 2012; 33:589-93. [PMID: 21797885 DOI: 10.1111/j.1365-3024.2011.01324.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Knowledge of immunity enables us to predict that the reactions set in response to infection with helminth would prevent concomitant disease driven by an opposing spectrum of immune events. In another way, the immune response generated to combat the helminth infection could counteract the immunopathological reactions that drive autoimmune diseases. Rodent model systems recapitulate many aspects of human autoimmune diseases and have been enormously useful in defining mechanisms of immunopathology after infection. From this theoretical perspective, many researchers have proved that infection with a variety of helminth can ameliorate disease in murine model systems. Thus, helminth-evoked Th2 events were shown to improve disorders in which Th1 events predominated. This raised the question, 'Can this information be translated into therapies for autoimmune diseases in humans via actual infection, cell delivery or drug intervention?' In this review, we will present some experimental trails to treat autoimmune disorders through establishment of some parasitic infections.
Collapse
Affiliation(s)
- M El-Malky
- Departments of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | |
Collapse
|
23
|
Elliott DE, Weinstock JV. Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann N Y Acad Sci 2012; 1247:83-96. [PMID: 22239614 DOI: 10.1111/j.1749-6632.2011.06292.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exposure to commensal and pathogenic organisms strongly influences our immune system. Exposure to helminths was frequent before humans constructed their current highly hygienic environment. Today, in highly industrialized countries, contact between humans and helminths is rare. Congruent with the decline in helminth infections is an increase in the prevalence of autoimmune and inflammatory disease. It is possible that exclusion of helminths from the environment has permitted the emergence of immune-mediated disease. We review the protective effects of helminths on expression of inflammatory bowel disease, multiple sclerosis, and animal models of these and other inflammatory diseases. We also review the immune pathways altered by helminths that may afford protection from these illnesses. Helminth exposure tends to inhibit IFN-γ and IL-17 production, promote IL-4, IL-10, and TGF-β release, induce CD4(+) T cell Foxp3 expression, and generate regulatory macrophages, dendritic cells, and B cells. Helminths enable protective pathways that may vary by specific species and disease model. Helminths or their products likely have therapeutic potential to control or prevent immune-mediated illness.
Collapse
Affiliation(s)
- David E Elliott
- Division of Gastroenterology, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
24
|
Bager P, Vinkel Hansen A, Wohlfahrt J, Melbye M. Helminth infection does not reduce risk for chronic inflammatory disease in a population-based cohort study. Gastroenterology 2012; 142:55-62. [PMID: 21983081 DOI: 10.1053/j.gastro.2011.09.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/05/2011] [Accepted: 09/24/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Parasitic helminth infections can suppress symptoms of allergy, type 1 diabetes, arthritis, and inflammatory bowel disease in animal models. We analyzed data from a large, population-based cohort study to determine whether common childhood enterobiasis protects against these diseases. METHODS We collected information on individual prescriptions filled for the drug mebendazole against Enterobius vermicularis for all children born in Denmark 1995-2008 from the National Register of Medicinal Product Statistics (n = 924,749; age 0-14 years); 132,383 of these children (14%) filled a prescription for mebendazole, 102,482 of the children (11%) had a household peer who was registered with a filled mebendazole prescription, and the remaining 689,884 children (75%) comprised the reference group. Children diagnosed with asthma, type 1 diabetes, juvenile arthritis, ulcerative colitis, or Crohn's disease were identified from the National Patient Registry. We used Poisson regression to estimate confounder-adjusted incidence rate ratios for first in- or outpatient hospital diagnosis of chronic inflammatory disease according to history of mebendazole treatment prescribed to children in the study. RESULTS Chronic inflammatory disease was diagnosed in 10,352 children during 6.4 million person-years of follow-up. The incidence rate ratios was 1.07 for asthma (95% confidence interval [CI]: 1.00-1.13), 1.05 for type 1 diabetes (95% CI: 0.79-1.12), 1.13 for juvenile arthritis (95% CI: 0.94-1.37), 0.77 for ulcerative colitis (95% CI: 0.41-1.46), and 1.44 for Crohn's disease (95% CI: 0.82-2.53). Results were not modified by number of treatments or age at treatment. CONCLUSIONS Based on a population-based analysis, enterobiasis does not reduce risk for asthma, type 1 diabetes, arthritis, or inflammatory bowel disease.
Collapse
Affiliation(s)
- Peter Bager
- Statens Serum Institut, Department of Epidemiology Research, Copenhagen S, Denmark.
| | | | | | | |
Collapse
|
25
|
Bager P, Kapel C, Roepstorff A, Thamsborg S, Arnved J, Rønborg S, Kristensen B, Poulsen LK, Wohlfahrt J, Melbye M. Symptoms after ingestion of pig whipworm Trichuris suis eggs in a randomized placebo-controlled double-blind clinical trial. PLoS One 2011; 6:e22346. [PMID: 21829616 PMCID: PMC3149054 DOI: 10.1371/journal.pone.0022346] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/19/2011] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Symptoms after human infection with the helminth Trichuris suis have not previously been described. Exposure to helminths has been suggested as immune therapy against allergy and autoimmune diseases. We randomized adults with allergic rhinitis to ingest a dose of 2500 T. suis eggs or placebo every 21 days for 168 days (total 8 doses) in a double-blind clinical trial. In a previous publication, we reported a lack of efficacy and a high prevalence of adverse gastrointestinal reactions. The aim of the present study was to present a detailed description of the adverse event data and post-hoc analyses of gastrointestinal reactions. Adverse events and severity (mild, moderate, severe) were recorded daily by subjects, classified by organ using MedDRA 10.0, and event rates compared between subjects on T. suis treatment vs. subjects on placebo. T. suis-specific serum IgG antibodies were measured by a fluoroenzymeimmunoassay (Phadia ApS). During 163 days complete follow-up, subjects ingesting T. suis eggs (N = 49) had a three to 19-fold higher rate of events (median duration, 2 days) with gastrointestinal reactions (moderate to severe flatulence, diarrhea, and upper abdominal pain) compared with placebo subjects (N = 47). The highest incidence of affected subjects was seen from the first few days and until day 42 (3(rd) dose): 63% vs. 29% for placebo; day 163: 76% vs. 49% for placebo. Seroprevalences increased concurrently in the T. suis group: Day 59, 50%; day 90, 91%; day 170, 93%. The combined duration of episodes with onset before day 42 was ≤ 14 days in 80% of affected subjects. Age, gender, total IgE, and recent intestinal symptoms at baseline did not predict gastrointestinal side effects. In conclusion, during the first 2 months, repeated ingestions of 2500 T. suis eggs caused frequent gastrointestinal reactions lasting up to 14 days, whereas 4 months further treatment mainly provoked a subclinical stimulation. TRIAL REGISTRATION University hospital Medical Information Network trial registry Reg. no. R000001298, Trial ID UMIN000001070.
Collapse
Affiliation(s)
- Peter Bager
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chiuso-Minicucci F, VAN DB, Zorzella-Pezavento SFG, Peres RS, Ishikawa LLW, Rosa LC, França TGD, Turato WM, Amarante AFT, Sartori A. Experimental autoimmune encephalomyelitis evolution was not modified by multiple infections with Strongyloides venezuelensis. Parasite Immunol 2011; 33:303-8. [PMID: 21477142 DOI: 10.1111/j.1365-3024.2011.01279.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
According to the hygiene hypothesis, the increased incidence of allergic and autoimmune diseases in developed countries is mainly explained by the decreased contact between the human population and certain environmental agents as lactobacillus, mycobacteria and helminths. In this study, we evaluated the effect of multiple infections with Strongyloides venezuelensis on the development of experimental autoimmune encephalomyelitis (EAE) in Lewis rats. Multiple infections before EAE induction were not able to change the evolution of the disease. No alterations were observed in weight loss, clinical score and inflammation intensity at the central nervous system. The presence of significant levels of parasite-specific IgG1 but not IgG2b suggested a Th2 polarization. However, the percentage and absolute number of CD4+CD25+Foxp3+ T cells were not changed, being their levels in the spleen and lymph nodes of infected rats comparable to the ones found in normal animals. These results suggest that a Th2-polarized response without concomitant expansion of Foxp3+ regulatory T cells was not able to modify EAE progression. Even though these results do not threaten the hygiene hypothesis, they suggest that this paradigm might be an oversimplification. They also emphasize the need of a study to compare the immunoregulatory ability associated with different helminth spp.
Collapse
Affiliation(s)
- F Chiuso-Minicucci
- Department of Microbiology and Immunology, Biosciences Institute, Univ Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Helminth parasites and the modulation of joint inflammation. J Parasitol Res 2011; 2011:942616. [PMID: 21584243 PMCID: PMC3092582 DOI: 10.1155/2011/942616] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/14/2011] [Indexed: 01/16/2023] Open
Abstract
There is an urgent need to develop better therapeutics for autoimmune and autoinflammatory diseases, of which musculoskeletal disorders such as rheumatoid arthritis are particularly prevalent and debilitating. Helminth parasites are accomplished masters at modifying their hosts' immune activity, and so attention has focused on rodent-helminth model systems to uncover the workings of the mammalian immune response to metazoan parasites, with the hope of revealing molecules and/or mechanisms that can be translated into better treatments for human autoimmune and idiopathic disorders. Substantial proof-of-principal data supporting the concept that infection with helminth parasites can reduce the severity of concomitant disease has been amassed from models of mucosal inflammation. Indeed, infection with helminth parasites has been tried as a therapy in inflammatory bowel disease, and there are case reports relating to other conditions (e.g., autism); however, the impact of infection with parasitic helminths on musculoskeletal diseases has not been extensively studied. Here, we present the view that such a strategy should be applied to the amelioration of joint inflammation and review the literature that supports this contention.
Collapse
|
28
|
Shi M, Wang A, Prescott D, Waterhouse CCM, Zhang S, McDougall JJ, Sharkey KA, McKay DM. Infection with an intestinal helminth parasite reduces Freund's complete adjuvant-induced monoarthritis in mice. ACTA ACUST UNITED AC 2011; 63:434-44. [PMID: 20967852 DOI: 10.1002/art.30098] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Assessment of infection with helminth parasites in murine models of disease could identify antiinflammatory mechanisms that translate into treatments for arthritic disease. The aim of this study was to test the ability of infection with the tapeworm Hymenolepis diminuta to ameliorate Freund's complete adjuvant (CFA)-induced monoarthritis in mice. METHODS Mice received CFA with or without H diminuta, and knee swelling, pain, and measures of inflammation were assessed. RESULTS Injection of CFA resulted in rapid (within 24 hours) and sustained (lasting 20 days) knee swelling, a decreased pain threshold, increased blood flow to the knee, and increased production of tumor necrosis factor α and interleukin-12p40 (IL-12p40). In mice that were infected with H diminuta 8 days prior to receiving CFA, the severity of arthritis was reduced as assessed by these indices of inflammation and infection 2 days after CFA injection and resulted in more rapid resolution of knee swelling. This antiarthritic effect required a viable infection and was dependent on adaptive immunity, because infection with H diminuta did not protect mice lacking T cells and B cells or the IL-4 receptor α chain from CFA-induced inflammation. Interleukin-10 was of prime importance in the antiarthritic effect, because IL-10-knockout mice were not protected by infection, the antiarthritic effect was ablated by use of neutralizing IL-10 antibodies, and transfer of CD4+ cells from infected wild-type mice but not IL-10-knockout mice significantly reduced CFA-induced knee swelling. CONCLUSION In mice, the adaptive immune response to infection with H diminuta involves mobilization of IL-10, which has the concomitant advantage of dampening the innate immune responses that drive CFA-induced joint inflammation.
Collapse
|
29
|
|
30
|
Wu Z, Nagano I, Asano K, Takahashi Y. Infection of non-encapsulated species of Trichinella ameliorates experimental autoimmune encephalomyelitis involving suppression of Th17 and Th1 response. Parasitol Res 2010; 107:1173-88. [PMID: 20661746 DOI: 10.1007/s00436-010-1985-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/13/2010] [Indexed: 12/14/2022]
Abstract
Epidemiological and experimental studies have indicated that helminth infections can ameliorate autoimmune diseases. The present study investigated the amelioration effect of the Trichinella pseudospiralis infection on experimental autoimmune encephalomyelitis (EAE), a T-cell-mediated autoimmune disease of central nervous system (CNS), and expression kinetics of Th17 and Th1 cytokine which play a crucial role in the pathogenesis of EAE. The results indicated that the infection of helminth T. pseudospiralis obviously ameliorated clinical severity and greatly delayed the onset of EAE induced by myelin oligodendrocyte glycoprotein (MOG) immunization. Infection caused much lesser inflammatory infiltration and demyilination in the CNS of infected EAE mice than uninfected EAE mice. The reduced infiltration was also suggested by the expressions of the inflammation cytokines, IL-17, IL-6, IL-1β, IFN-γ, and TNF-α, which were high in the spinal cords of the uninfected EAE mice, but was nearly normal or low in the infected EAE mice. The increased production of MOG-induced IL-17 and IFN-γ and the expression of IL-6, IL-1β, TGF-β in splenocytes after restimulation with MOG was inhibited in the infected EAE mice. On the other hand, the greatly induced Th2 response was observed in the splenocytes of the infected EAE mice. The present study showed that T. pseudospiralis infection can suppresses EAE by reducing the inflammatory infiltration in CNS, likely associated with the suppression of Th17 and Th1 responses by the infection.
Collapse
Affiliation(s)
- Zhiliang Wu
- Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan.
| | | | | | | |
Collapse
|